Buss-Haskert/Quadratische Gleichungen: Unterschied zwischen den Versionen
K (Beispiele ergänzt) |
K (Merksatz ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 60: | Zeile 60: | ||
2. 2x² + 10 = 10 |<br> | 2. 2x² + 10 = 10 |<br> | ||
...</div> | ...</div> | ||
<div class="width-1-3">'''Keine''' | <div class="width-1-3">'''Keine''' Lösung:<br> | ||
3. -3x² = 108 |<br> | 3. -3x² = 108 |<br> | ||
...</div> | ...</div> | ||
</div> | </div> | ||
{{Box|1=Anzahl der Lösungen quadratischer Gleichungen|2=Die Anzahl der Lösungen quadratischer Gleichungen hängt vom Radikand ab(vom Wert unter der Wurzel). Die Gleichung hat <span style="color:red">zwei</span> Lösungen, <span style="color:green">eine</span> oder <span style="color:blue">keine</span> Lösung, wenn der Radikand <span style="color:red">positiv</span>, <span style="color:green">null</span> oder <span style="color:blue">negativ</span> ist.|3=Arbeitsmethode}} | |||
[[Datei:Idee Flipchart.png|rahmenlos|95x95px]]Du kannst diese Gleichungen auch grafisch lösen:<br> | [[Datei:Idee Flipchart.png|rahmenlos|95x95px]]Du kannst diese Gleichungen auch grafisch lösen:<br> |
Version vom 21. Oktober 2020, 14:58 Uhr
SEITE IM AUFBAU !!!
In der Fahrschule lernst du eine Faustformel für die Berechnung des Bremsweges:
Bremsweg in m: sB = ()²
Hier handelt es sich um eine quadratische Gleichung, da die Variable v quadriert wird (v²).
Berechne den Bremsweg, wenn das Auto mit einer Geschwindigkeit von 30km/h fährt, also v=30 und wenn es mit einer Geschwindigkeit von 50km/h unterwegs ist.
Was fällt dir auf?
Vor Schulen oder Kindergärten sollten die Bremswege möglichst kurz sein. Wie schnell darf ein Auto fahren, damit der Bremsweg höchstens 4m beträgt?
Wenn v=30 beträgt, ist sB = ()² = 3² = 9 (m)
Für v=50 ist sB = ()² = 5² = 25(m)
Der Bremsweg ist also bei 50 km/h deutlich länger als bei 30 km/h, denn er hängt vom Quadrat der Geschwindigkeit ab.
Du siehst: Mathe ist überall! Du erarbeitest nun die Grundlagen zum Lösen solcher quadratischer Gleichungen.
1) Was sind quadratische Gleichungen?
Quadratische Gleichungen sind Gleichungen, in denen die Variable in zweiter Potenz (also z.B. x²) vorkommt.
Erinnerung: Lineare Gleichungen sind Gleichungen, in denen die Variable nur in erster Potenz (also z.B. x = x1) vorkommt.
Entscheide in der nachfolgenden LearningApp, ob es sich um eine quadratische Gleichung handelt oder nicht.
2) Wie löse ich quadratische Gleichungen?
Quadratische Gleichungen kannst du zeichnerisch und rechnerisch lösen. Nutze für die zeichnerische Lösung GeoGebra und prüfe so immer deine rechnerischen Lösungen. Es gibt verschiedene Formen quadratischer Gleichungen. Die Lösungsstrategie hängt von der Form ab. Dies erklären die folgenden Kapitel.
2.1) Rein quadratische Gleichungen lösen
In der obigen Faustformel kommt die Variable v nur in quadratischer Form vor, also nur als v². Solche Gleichungen heißen "rein quadratisch". Sie haben immer die Form ax² = d (hier umgeformt v² = sB)
Diese Gleichungen zu lösen hast du schon in der 9. Klasse gelernt. Wiederhole dein Wissen mithilfe der nachfolgenden Aufgaben.
Was ist die bei der letzten Aufgabe aufgefallen?
In den obigen Aufgaben erkennst du, dass eine rein quadratische Gleichung mehrere Lösungen haben kann:
zwei Lösungen, eine Lösung oder keine Lösung.
Wovon hängt die Anzahl der Lösungen ab?
Erkläre und begründe mithilfe der nachfolgenden Beispiele:
1. x² = 169 |
2. 2x² + 10 = 10 |
3. -3x² = 108 |
Du kannst diese Gleichungen auch grafisch lösen:
Beispiel:
1. x² = 169 kannst du auch schreiben als x² - 169 = 0. Du berechnest also die Nullstellen der Funktion f(x) = x² - 169.
Wie hilft dir das nachfolgende Applet bei der Lösung der Gleichung 0,5x² = 4,5 ? Erkläre!
Nutze jeweils die GeoGebra-Applets, um deine gelösten Aufgaben zu kontrollieren.