Herta-Lebenstein-Realschule/Die Scheitelpunktform quadratischer Funktionen sportlich erarbeiten: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
K (Rechtschreibfehler berichtigt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
{{Vorlage:Projektstartseite|Titel des Projekts=Lernpfad Scheitelpunktform quadratische Funktionen sportlich erarbeiten|Farbe=#00008B|Bild=Basketball-779456 1920.jpg|mini|Bild von Hebi B. auf Pixabay|Höhe=250|Beschreibung des Projekts=Die Parameter a, d und e der Scheitelpunktform quadratische Funktionen f(x) = a (x + d)² + e werden mithilfe dreier "Sportler" | {{Vorlage:Projektstartseite|Titel des Projekts=Lernpfad Scheitelpunktform quadratische Funktionen sportlich erarbeiten|Farbe=#00008B|Bild=Basketball-779456 1920.jpg|mini|Bild von Hebi B. auf Pixabay|Höhe=250|Beschreibung des Projekts=Die Parameter a, d und e der Scheitelpunktform quadratische Funktionen f(x) = a (x + d)² + e werden mithilfe dreier "Sportler" erarbeitet|Weitere Hinweise=}} | ||
#'''<big>A</big>'''nton: f(x) = '''<big><big><big>a</big></big></big>'''x² | #'''<big>A</big>'''nton: f(x) = '''<big><big><big>a</big></big></big>'''x² |
Version vom 20. Mai 2020, 19:48 Uhr
- Anton: f(x) = ax²
Anton ist sehr sportlich, er spielt Basketball:
Öffne die Seite und verändere a mit dem Schieberegler.
Welche Auswirkungen hat der anton auf das Schaubild der Normalparabel?
1. Beschreibe den Verlauf der Parabel f(x) = 5x2
(nach oben geöffnet) (!nach unten geöffnet) (gestreckt) (!gestaucht)
2. Beschreibe den Verlauf der Parabel f(x) = -3x2
(!nach oben geöffnet) (nach unten geöffnet) (gestreckt) (!gestaucht)
3. Beschreibe den Verlauf der Parabel f(x) = 0,5x2
(nach oben geöffnet) (!nach unten geöffnet) (!gestreckt) (gestaucht)
4. Beschreibe den Verlauf der Parabel f(x) = -x2
(!nach oben geöffnet) (nach unten geöffnet) (!gestreckt) (gestaucht)
2. Detlef: f(x) = (x + d)²
Detlef ist ebenfalls sportlich, allerdings auch ein wenig dusselig. Er läuft beim Sprint immer in die entgegengesetzte Richtung.
Öffne die Seite und verändere d mit dem Schieberegler.
Welche Auswirkungen hat detlf auf das Schaubild der Normalparabel?
3. Emil: f(x) = x² + e
emil ist ebenfalls sehr sportlich:
Er kann sehr hoch springen, ebenso gut kann er tauchen.
Öffne die Seite und verändere e mit dem Schieberegler.
Welche Auswirkungen hat emil auf das Schaubild der Normalparabel?