Benutzer:Klara WWU-6/Von der Randfunktion zur Integralfunktion: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung |
KKeine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
===Infoboxen=== | ===Infoboxen=== | ||
{{Box|partielle Integration |Die partielle Integration ist eine Methode, die die Integration von Produkten zweier Funktionen ermöglicht. Sie beruht auf der Produktregel und wird daher auch Produktintegration genannt. Dabei ist es von Vorteil, wenn die eine Funktion leicht abzuleiten und die andere leicht zu integrieren ist. Allgemein definiert man die Formel der partiellen Integration so:<math> \int f'(x)*g(x)\,dx = [f(x) * g(x)] - \int f(x)*g'(x)\,dx </math> Dabei ist <math> \int f'(x)*g(x)\,dx </math> das ursprüngliche Integral. | {{Box|partielle Integration |Die partielle Integration ist eine Methode, die die Integration von Produkten zweier Funktionen ermöglicht. Sie beruht auf der Produktregel und wird daher auch Produktintegration genannt. Dabei ist es von Vorteil, wenn die eine Funktion leicht abzuleiten und die andere leicht zu integrieren ist. Allgemein definiert man die Formel der partiellen Integration so:<math> \int f'(x)*g(x)\,dx = [f(x) * g(x)] - \int f(x)*g'(x)\,dx </math> Dabei ist <math> \int f'(x)*g(x)\,dx </math> das ursprüngliche Integral. <math> f'(x) </math> ist die leicht zu integrierende Funktion. <math> g(x) </math> ist die leicht abzuleitende Funktion.|}} | ||
Falls du eine ausführliche Erklärung mit einem Beispiel benötigst,[[klicke hier.]] | Falls du eine ausführliche Erklärung mit einem Beispiel benötigst,[[klicke hier.]] | ||
'''Beispiel zur partielle Integration''' | '''Beispiel zur partielle Integration :<math>h(x) = e^x * x</math>''' | ||
<math> e^x </math> lässt sich leicht integrieren. Also <math> f(x)=e^x </math> und <math> f'(x)=e^x </math> | |||
<math> x </math> lässt sich leicht ableiten. Also <math> g(x)=x </math> und <math> g'(x)=1 </math> | |||
Nun müssen unsere Funktionen und deren Ableitungen in die oben genannte Formel eingesetzt werden: <math> \int f'(x)*g(x)\,dx = [f(x) * g(x)] - \int f(x)*g'(x)\,dx </math> | Nun müssen unsere Funktionen und deren Ableitungen in die oben genannte Formel eingesetzt werden: <math> \int f'(x)*g(x)\,dx = [f(x) * g(x)] - \int f(x)*g'(x)\,dx </math> | ||
Zeile 56: | Zeile 54: | ||
{{Lösung versteckt| Setze die leicht abzuleitende Funktion <math> g(x)=x </math> und die leicht zu integrierende Funktion <math> f'(x)=sin(2x)</math>| Tipp 2| Tipp 2}} | {{Lösung versteckt| Setze die leicht abzuleitende Funktion <math> g(x)=x </math> und die leicht zu integrierende Funktion <math> f'(x)=sin(2x)</math>| Tipp 2| Tipp 2}} | ||
{{Lösung versteckt| <math> F(x)= \frac{sin(2x)}{4} - \frac{x*cos(2x)}{2} + C </math>|Lösung anzeigen|Lösung verbergen}} |
Version vom 9. April 2020, 12:09 Uhr
Infoboxen
Falls du eine ausführliche Erklärung mit einem Beispiel benötigst,klicke hier.
Beispiel zur partielle Integration :
lässt sich leicht integrieren. Also und
lässt sich leicht ableiten. Also und
Nun müssen unsere Funktionen und deren Ableitungen in die oben genannte Formel eingesetzt werden:
Die integrierte Funktion bzw. Stammfunktion von lautet somit:
Aufgaben
Nutze die partielle Integration
Setze die leicht abzuleitende Funktion und die leicht zu integrierende Funktion