Julius-Echter-Gymnasium/Mathematik/Erweitern und Kürzen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 27: | Zeile 27: | ||
<span style="color: turquoise"><u>Kürzen:</u></span> Dividiere Zähler und Nenner des Bruches durch dieselbe natürliche Zahl, welche nicht 0 sein darf! | <span style="color: turquoise"><u>Kürzen:</u></span> Dividiere Zähler und Nenner des Bruches durch dieselbe natürliche Zahl, welche nicht 0 sein darf! | ||
Bsp.: Kürze den Bruch <math>\frac{40}{100}</math> soweit es geht. | Bsp.: Kürze den Bruch <math>\frac{40}{100}</math> soweit es geht. | ||
<math> \frac{40}{100}= \frac{2\cdot20}{5\cdot20} = \frac{2}{5} </math> | <math> \frac{40}{100}= \frac{2\cdot20}{5\cdot20} = \frac{2}{5} </math> | ||
Zeile 33: | Zeile 33: | ||
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
Beim '''Erweitern''' bzw. Kürzen muss man Zähler und '''Nenner''' mit der gleichen Zahl multiplizieren bzw. dividieren. | Beim '''Erweitern''' bzw. Kürzen muss man Zähler und '''Nenner''' mit der gleichen Zahl multiplizieren bzw. dividieren. | ||
</div> | |||
Nun gibt es hier ein kleines Beispiel, mit dem du testen kannst, ob du die Grundregeln verstanden hast. '''Viel Spaß!''' | |||
===Zuordnungs-Quiz=== | ===Zuordnungs-Quiz=== | ||
Zeile 45: | Zeile 44: | ||
{| | {| | ||
|Erweitern||<math> \frac{2}{3}\cdot\frac{5}{5}=\frac{10}{15}</math>||<math> \frac{1}{2}\cdot\frac{4}{4}=\frac{4}{8}</math>||<math> \frac{2}{2}\cdot\frac{2}{4}=\frac{4}{8}</math> | |Erweitern||<math> \frac{2}{3}\cdot\frac{5}{5}=\frac{10}{15}</math>||<math> \frac{1}{2}\cdot\frac{4}{4}=\frac{4}{8}</math>||<math> \frac{2}{2}\cdot\frac{2}{4}=\frac{4}{8}</math> | ||
|- | |- | ||
|Kürzen||<math> \frac{6}{18}:\frac{3}{3}=\frac{2}{6}</math> | |Kürzen||<math> \frac{6}{18}:\frac{3}{3}=\frac{2}{6}</math> | ||
Zeile 51: | Zeile 49: | ||
||<math> \frac{36}{54}:\frac{9}{9}=\frac{4}{6}</math> | ||<math> \frac{36}{54}:\frac{9}{9}=\frac{4}{6}</math> | ||
|} | |} | ||
</div> | </div> | ||
Zeile 61: | Zeile 57: | ||
{{Lösung versteckt|{{LearningApp|app=117450|width=100%|height=500px}} | {{Lösung versteckt|{{LearningApp|app=117450|width=100%|height=500px}} | ||
|Aufgabe anzeigen|Aufgabe verstecken}} | |Aufgabe anzeigen|Aufgabe verstecken}} | ||
'''Aufgabe 2''' | '''Aufgabe 2''' | ||
{{Lösung versteckt|{{LearningApp|app=4525567|width=100%|height=500px}} | {{Lösung versteckt|{{LearningApp|app=4525567|width=100%|height=500px}} | ||
|Aufgabe anzeigen|Aufgabe verstecken}} | |Aufgabe anzeigen|Aufgabe verstecken}} | ||
'''Aufgabe 3''' | '''Aufgabe 3''' | ||
{{Lösung versteckt|{{LearningApp|app=1574480|width=100%|height=500px}} | {{Lösung versteckt|{{LearningApp|app=1574480|width=100%|height=500px}} | ||
|Aufgabe anzeigen|Aufgabe verstecken}} | |Aufgabe anzeigen|Aufgabe verstecken}} |
Version vom 27. Januar 2020, 22:41 Uhr
Was ist überhaupt ein Bruch?
Ganz einfach: Ein Bruch ist ein Teil eines Ganzen!
So repräsentiert z.B. der Bruch 3 Teile eines Ganzen, das aus insgesamt 4 Teilen besteht.
Als Bruchrechnung bezeichnet man das Rechnen mit gemeinen Brüchen in der „Zähler-Bruchstrich-Nenner-Schreibweise“.
Wenn du mit Brüchen rechnen willst, musst du in der Lage sein, sie richtig zu kürzen oder zu erweitern. Das brauchst du immer wieder für die verschiedenen Bruchrechnungen. Also pass gut auf!
Erweitern und Kürzen:
Erweitern: Multipliziere Zähler und Nenner des Bruches mit derselben natürlichen Zahl, welche nicht 0 sein darf!
Bsp.: Erweitere den Bruch mit 20.
Kürzen: Dividiere Zähler und Nenner des Bruches durch dieselbe natürliche Zahl, welche nicht 0 sein darf!
Bsp.: Kürze den Bruch soweit es geht.
Beim Erweitern bzw. Kürzen muss man Zähler und Nenner mit der gleichen Zahl multiplizieren bzw. dividieren.
Nun gibt es hier ein kleines Beispiel, mit dem du testen kannst, ob du die Grundregeln verstanden hast. Viel Spaß!
Zuordnungs-Quiz
Erweitern | |||
Kürzen |
Hier gibt es nun weitere Aufgaben für dich zum Üben:
Aufgabe 1
Aufgabe 2
Aufgabe 3