Benutzer:Svea WWU-5/Testseite2: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 15: Zeile 15:
Gegeben seien stets die Steigung der Geraden und ein Punkt, durch den die Gerade verläuft. Bestimme in deinem Heft die jeweiligen Gleichungen der Geraden in der Form <math>f(x) = mx + n</math>.
Gegeben seien stets die Steigung der Geraden und ein Punkt, durch den die Gerade verläuft. Bestimme in deinem Heft die jeweiligen Gleichungen der Geraden in der Form <math>f(x) = mx + n</math>.


'''a)''' Gegeben sei die Steigung <math>m = 3,5</math> und der Punkt <math>P(2/5)</math>.
 
 
'''a)''' Rechnen mit ganzen Zahlen
 
Gegeben sei die Steigung <math>m = -4</math> und der Punkt <math>P(-7/-1)</math>.
 
{{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + n</math> ein.|2=Tipp|3=Tipp}}
 
{{Lösung versteckt|1 = 1. Setze zunächst für die Steigung <math>m = -4</math>, sodass dein erstes Gerüst <math>f(x) = -4x + n</math> entsteht.
 
2. Nutze die Angabe des Punktes <math>P(-7/-1)</math>, sodass du mit <math>x = -7</math> und <math>f(x) = -1</math> die Gleichung <math>-1 = -4\cdot(-7) + n</math> erhältst.
 
3. Bestimme nun mit Auflösung nach <math>n</math> den Wert <math>n = -29</math>, sodass sich schließlich die Geradengleichung <math>f(x) = -4x - 29</math> ergibt.|2 = Lösung|3 = Lösung}}
 
'''b)''' Rechnen mit Dezimalbrüchen
 
Gegeben sei die Steigung <math>m = 3,5</math> und der Punkt <math>P(2/5)</math>.


{{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + n</math> ein.|2=Tipp|3=Tipp}}
{{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + n</math> ein.|2=Tipp|3=Tipp}}
Zeile 25: Zeile 41:
3. Bestimme nun mit Auflösung nach <math>n</math> den Wert <math>n = -2</math>, sodass sich schließlich die Geradengleichung <math>f(x) = 3,5\cdot x - 2</math> ergibt.|2 = Lösung|3 = Lösung}}
3. Bestimme nun mit Auflösung nach <math>n</math> den Wert <math>n = -2</math>, sodass sich schließlich die Geradengleichung <math>f(x) = 3,5\cdot x - 2</math> ergibt.|2 = Lösung|3 = Lösung}}


'''b)''' Gegeben sei die Steigung <math>m = -4</math> und der Punkt <math>P(-7/-1)</math>.
'''c)''' Gegeben sei die Steigung <math>m = \frac{5}{8}</math> und der Punkt <math>P(-\frac{2}{7}/\frac{3}{4})</math>.


{{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + b</math> ein.|2=Tipp|3=Tipp}}
{{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + n</math> ein.|2=Tipp|3=Tipp}}


{{Lösung versteckt|1 = Setze zunächst für die Steigung <math>m = -4</math>, sodass dein erstes Gerüst <math>f(x) = -4x + b</math> entsteht. Nutze in einem zweiten Schritt die Angabe des Punktes <math>P(-7/-1)</math>, sodass du mit <math>x = -7</math> und <math>f(x) = -1</math> die Gleichung <math>-1 = -4\cdot(-7) + b</math> erhältst. Bestimme nun mit Auflösung nach <math>b</math> den Wert <math>b = -29</math>, sodass sich schließlich die Geradengleichung <math>f(x) = -4x - 29</math> ergibt.|2 = Lösung|3 = Lösung}}
{{Lösung versteckt|1 = 1. Setze zunächst für die Steigung <math>m = \frac{5}{8}</math>, sodass dein erstes Gerüst <math>f(x) = \frac{5}{8}x + n</math> entsteht.  
 
'''c)''' Gegeben sei die Steigung <math>m = \frac{5}{8}</math> und der Punkt <math>P(-\frac{2}{7}/\frac{3}{4})</math>.


{{Lösung versteckt|1=Setze die gegebenen Informationen in die Geradengleichung der Form <math>f(x) = mx + b</math> ein.|2=Tipp|3=Tipp}}
2. Nutze die Angabe des Punktes <math>P(-\frac{2}{7}/\frac{3}{4})</math>, sodass du mit <math>x = -\frac{2}{7}</math> und <math>f(x) = \frac{3}{4})</math> die Gleichung <math>\frac{3}{4}) = \frac{5}{8}\cdot(-\frac{2}{7}) + n</math> erhältst.


{{Lösung versteckt|1 = Setze zunächst für die Steigung <math>m = \frac{5}{8}</math>, sodass dein erstes Gerüst <math>f(x) = \frac{5}{8}x + b</math> entsteht. Nutze in einem zweiten Schritt die Angabe des Punktes <math>P(-\frac{2}{7}/\frac{3}{4})</math>, sodass du mit <math>x = -\frac{2}{7}</math> und <math>f(x) = \frac{3}{4})</math> die Gleichung <math>\frac{3}{4}) = \frac{5}{8}\cdot(-\frac{2}{7}) + b</math> erhältst. Bestimme nun mit Auflösung nach <math>b</math> den Wert <math>b = \frac{52}{56} = \frac{13}{14}</math>, sodass sich schließlich die Geradengleichung <math>f(x) = \frac{5}{8}x + \frac{13}{14}</math> ergibt.|2 = Lösung|3 = Lösung}}|3=Arbeitsmethode}}
3. Bestimme nun mit Auflösung nach <math>n</math> den Wert <math>n = \frac{52}{56} = \frac{13}{14}</math>, sodass sich schließlich die Geradengleichung <math>f(x) = \frac{5}{8}x + \frac{13}{14}</math> ergibt.|2 = Lösung|3 = Lösung}}|3=Arbeitsmethode}}

Version vom 27. Oktober 2019, 09:20 Uhr

Lineare Funktionen - eine kurze Wiederholung

Aufgabe 1: Lückentext über Lineare Funktionen

Wiederhole die wichtigen Eigenschaften linearer Funktionen, indem du den folgenden Lückentext bearbeitest. Für jede Lücke gibt es nur eine richtige Antwort. Anschließend kannst du in der folgenden Grafik die Werte und verändern und beobachten, wie sich der Funktionsgraph verändert. Setze beispielsweise und variiere .



GeoGebra


Lineare Funktionen - Bestimmung von Geradengleichungen

Aufgabe 3: Eine Geradengleichung mithilfe von einem Punkt und der Steigung bestimmen*

Gegeben seien stets die Steigung der Geraden und ein Punkt, durch den die Gerade verläuft. Bestimme in deinem Heft die jeweiligen Gleichungen der Geraden in der Form .


a) Rechnen mit ganzen Zahlen

Gegeben sei die Steigung und der Punkt .

Setze die gegebenen Informationen in die Geradengleichung der Form ein.

1. Setze zunächst für die Steigung , sodass dein erstes Gerüst entsteht.

2. Nutze die Angabe des Punktes , sodass du mit und die Gleichung erhältst.

3. Bestimme nun mit Auflösung nach den Wert , sodass sich schließlich die Geradengleichung ergibt.

b) Rechnen mit Dezimalbrüchen

Gegeben sei die Steigung  und der Punkt .
Setze die gegebenen Informationen in die Geradengleichung der Form ein.

1. Setze zunächst für die Steigung ein, sodass dein erstes Gerüst entsteht.

2. Nutze die Angabe des Punktes , sodass du mit und die Gleichung erhältst.

3. Bestimme nun mit Auflösung nach den Wert , sodass sich schließlich die Geradengleichung ergibt.

c) Gegeben sei die Steigung und der Punkt .

Setze die gegebenen Informationen in die Geradengleichung der Form ein.

1. Setze zunächst für die Steigung , sodass dein erstes Gerüst entsteht.

2. Nutze die Angabe des Punktes , sodass du mit und die Gleichung erhältst.

3. Bestimme nun mit Auflösung nach den Wert , sodass sich schließlich die Geradengleichung ergibt.