Benutzer:Anja WWU-5/Testseite: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 72: | Zeile 72: | ||
* Für die Steigung <math>m</math> der Geraden musst du beide Werte in die folgende Gleichung einsetzen: <br> <math>m = \frac{H\ddot{o}henunterschied}{L\ddot{a}ngenunterschied} = \frac{y_Q - y_P}{x_Q - x_P} = \frac{4}{2} = \frac{2}{1} = 2</math> | * Für die Steigung <math>m</math> der Geraden musst du beide Werte in die folgende Gleichung einsetzen: <br> <math>m = \frac{H\ddot{o}henunterschied}{L\ddot{a}ngenunterschied} = \frac{y_Q - y_P}{x_Q - x_P} = \frac{4}{2} = \frac{2}{1} = 2</math> | ||
* Um den y-Achsenabschnitt zu berechen, setzt du die Steigung <math>m = 2</math> und einen der Punkte in die Geradengleichung <math>f(x) = mx + n</math> ein: | * Um den y-Achsenabschnitt zu berechen, setzt du die Steigung <math>m = 2</math> und einen der Punkte in die Geradengleichung <math>f(x) = mx + n</math> ein: | ||
** Falls du als Punkt <math>P</math> gewählt hast, erhälst du also <math>f(x) = mx + n \Leftrightarrow 2 = 2*1 + n | ** Falls du als Punkt <math>P</math> gewählt hast, erhälst du also <math>f(x) = mx + n \Leftrightarrow 2 = 2*1 + n \Leftrightarrow 2 = 2 + n \Leftrightarrow 0 = n</math> | ||
** Falls du als Punkt <math>Q</math> gewählt hast, erhälst du also <math>f(x) = mx + n | ** Falls du als Punkt <math>Q</math> gewählt hast, erhälst du also <math>f(x) = mx + n \Leftrightarrow 6 = 2*3 + n \Leftrightarrow 6 = 6 + n \Leftrightarrow 0 = n</math> | ||
Wenn du nach der ersten Variante vorgehen möchtest, also erst die Steigung <math>m</math> und dann mithilfe eines der beiden Punkte <math>b</math> bestimmen möchtest, dann ergibt sich zunächst für die Steigung: <math>m = \frac{f(x)_Q - f(x)_P}{x_Q - x_P} = \frac{6 + 4}{8 - 3} = 2</math>. Im Anschluss erhältst du durch Einsetzen des Punktes <math>P</math> oder <math>Q</math> entweder <math>-4 = 2 \cdot 3 + b</math> oder <math>6 = 2 \cdot 8 + b</math>. Die Auflösung einer der beiden Gleichungen nach <math>b</math> liefert <math>b = -10</math>, sodass du schließlich die Funktionsgleichung <math>f(x) = 2x - 10</math> erhältst. | Wenn du nach der ersten Variante vorgehen möchtest, also erst die Steigung <math>m</math> und dann mithilfe eines der beiden Punkte <math>b</math> bestimmen möchtest, dann ergibt sich zunächst für die Steigung: <math>m = \frac{f(x)_Q - f(x)_P}{x_Q - x_P} = \frac{6 + 4}{8 - 3} = 2</math>. Im Anschluss erhältst du durch Einsetzen des Punktes <math>P</math> oder <math>Q</math> entweder <math>-4 = 2 \cdot 3 + b</math> oder <math>6 = 2 \cdot 8 + b</math>. Die Auflösung einer der beiden Gleichungen nach <math>b</math> liefert <math>b = -10</math>, sodass du schließlich die Funktionsgleichung <math>f(x) = 2x - 10</math> erhältst. |
Version vom 24. Oktober 2019, 09:36 Uhr
Spielwiese
Schreiben im Wiki
Neben normalem Text kann man auch kursiven oder fett gedruckten Text schreiben. Ebenso ist eine Kombination aus beidem möglich. Grüner Text ist etwas schwieriger und funktioniert über die Quelltextbearbeitung.
Vorlagen
Ganz einfach per Mausklick aktivierbar.
Dateien
Interaktive Applets
Kombinationen
Test für unseren Lernpfad
Den Schnittpunkt zweier Geraden bestimmen