Benutzer:Anja WWU-5/Testseite: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 72: Zeile 72:
* Für die Steigung <math>m</math> der Geraden musst du beide Werte in die folgende Gleichung einsetzen: <br> <math>m = \frac{H\ddot{o}henunterschied}{L\ddot{a}ngenunterschied} = \frac{y_Q - y_P}{x_Q - x_P} = \frac{4}{2} = \frac{2}{1} = 2</math>
* Für die Steigung <math>m</math> der Geraden musst du beide Werte in die folgende Gleichung einsetzen: <br> <math>m = \frac{H\ddot{o}henunterschied}{L\ddot{a}ngenunterschied} = \frac{y_Q - y_P}{x_Q - x_P} = \frac{4}{2} = \frac{2}{1} = 2</math>
* Um den y-Achsenabschnitt zu berechen, setzt du die Steigung <math>m = 2</math> und einen der Punkte in die Geradengleichung <math>f(x) = mx + n</math> ein:
* Um den y-Achsenabschnitt zu berechen, setzt du die Steigung <math>m = 2</math> und einen der Punkte in die Geradengleichung <math>f(x) = mx + n</math> ein:
** Falls du als Punkt <math>P</math> gewählt hast, erhälst du also <math>f(x) = mx + n <=> 2 = 2*1 + n <=> 2 = 2 + n <=> 0 = n</math>
** Falls du als Punkt <math>P</math> gewählt hast, erhälst du also <math>f(x) = mx + n \Leftrightarrow 2 = 2*1 + n <=> 2 = 2 + n <=> 0 = n</math>
** Falls du als Punkt <math>Q</math> gewählt hast, erhälst du also <math>f(x) = mx + n <=> 6 = 2*3 + n <=> 6 = 6 + n <=> 0 = n</math>
** Falls du als Punkt <math>Q</math> gewählt hast, erhälst du also <math>f(x) = mx + n <=> 6 = 2*3 + n <=> 6 = 6 + n <=> 0 = n</math>



Version vom 24. Oktober 2019, 09:36 Uhr

Spielwiese

Schreiben im Wiki

Neben normalem Text kann man auch kursiven oder fett gedruckten Text schreiben. Ebenso ist eine Kombination aus beidem möglich. Grüner Text ist etwas schwieriger und funktioniert über die Quelltextbearbeitung.

Vorlagen

Aufgabe
beliebiger Inhalt
Übung
beliebiger Inhalt
Merksatz
beliebiger Inhalt

Dateien

Dies ist das neue Logo der WWU Münser.

Interaktive Applets


Kombinationen

Merke
Bei linearen Funktionen der Form gibt den Y-Achsenabschnitt des Graphen an.


Arbeitsmethode

Bestimme die y-Achsenabschnitte folgender Funktionen:

(1) ,          (2)      und     (3)  ?

Test für unseren Lernpfad

Den Schnittpunkt zweier Geraden bestimmen

Das Steigungsdreieck

Die Steigung einer linearen Funktion bestimmt man in der Regel mit folgenden Schritten:

  1. Zunächst benötigt man zwei beliebige Punkte und .
  2. Um den Höhenunterschied der Punkte zu bestimmen, benötigt man die y-Koordinaten der Punkte und .
  3. Um den Längenunterschied der Punkte zu bestimmen, benötigt man die x-Koordinaten der Punkte und .
  4. Für die Steigung der Geraden gilt:


Aufgabe 4: Eine Geradengleichung mithilfe von zwei Punkten bestimmen

Gegeben seien stets zwei Punkte, durch die eine Gerade verläuft. Bestimme in deinem Heft die jeweiligen Gleichungen der Geraden in der Form .

a) Gegeben seien die Punkte und .

b) Gegeben seien die Punkte und .

c) Gegeben seien die Punkte und .

Steigungsdreieck einer linearen Funktion an zwei ausgewählten Punkten