Geometrie im Dreieck/Komm zum Punkt: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierungen: Manuelle Zurücksetzung 2017-Quelltext-Bearbeitung |
||
(33 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt) | |||
Zeile 27: | Zeile 27: | ||
</div> | </div> | ||
{{Box | Aufgabe | ==Aufgabe 1== | ||
< | {{Box | Aufgabe 1: | | Arbeitsmethode | Farbe={{Farbe|orange}} }} | ||
<div class="lueckentext-quiz"> | |||
a) Ordne die Punkte den Geraden zu, deren Schnittpunkt sie bilden. | |||
Mittelsenkrechte - '''Umkreismittelpunkt''' | |||
Winkelhalbierende - '''Inkreismittelpunkt''' | |||
Seitenhalbierende - '''Schwerpunkt''' | |||
</div> | |||
b) Wie kannst du dir gut merken, welcher Punkt zu welchen Geraden gehört? Notiere hierzu eine Eselsbrücke oder eine andere Merktechnik zu den drei Punkten. | |||
{{Lösung versteckt|Eine einfache Eselsbrücke könnte so lauten: | |||
'''S'''chwerpunkt und '''S'''eitenhalbierende: Beides beginnt mit "'''S'''". | |||
'''Ink'''reis und W'''ink'''elhalbierende: In beidem kommt "'''ink'''" vor. | |||
U'''m'''kreis und '''M'''ittelsenkrechte: In beidem kommt "'''m'''" vor. | |||
|Tipp anzeigen|Tipp verbergen}} | |||
<div class="box experimentieren"> | |||
== Basiswissen == | |||
Der Umkreismittelpunkt kann als einziger Punkt auch außerhalb des Dreiecks liegen. Nämlich genau dann, wenn das Dreieck einen stumpfen Winkel hat. Bei einem Rechtwinkligen Dreieck liegt der Umkreismittelpunkt auf der gegebüberliegenden Seite (Hypotenuse). Im Kasten kannst du die Eckpunkte des Dreiecks verschieben und den Umkreismittelpunkt beobachten. | |||
Wenn du nicht mehr weißt was ein stumpfer Winkel ist schaue [https://projekte.zum.de/wiki/Digitale_Werkzeuge_in_der_Schule/Rund_ums_Dreieck hier]. <ggb_applet id="krn9wqhf" width="400" height="450" /> | |||
</div> | |||
==Aufgabe 2== | |||
{{Box | Aufgabe 2:| Notiere zu jedem besonderen Punkt des Dreiecks die Kerneigenschaften.| Arbeitsmethode | Farbe={{Farbe|orange}} }} | |||
{{Lösung versteckt| | |||
Der Inkreismittelpunkt hat zu allen Seiten den gleichen Abstand. | |||
Der Umkreismittelpunkt hat zu allen Eckpunkten den gleichen Abstand. | |||
Der Schwerpunkt liegt immer auf 2/3 der Strecke vom Eckpunkt bis zur gegenüberliegenden Seite. | |||
|Tipp anzeigen|Tipp verbergen}} | |||
==Aufgabe 3== | |||
{{Box | Aufgabe 3: | Benenne die Punkte M<sub>1</sub> M<sub>2</sub> und M<sub>3</sub> der dynamischen Grafik. Du kannst die Eckpunkte des Dreiecks bewegen. | Arbeitsmethode}} | |||
<ggb_applet id="srjcpuge" width="400" height="450" /> | |||
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
Deine Lösung: | |||
M<sub>1</sub> - '''Umkreismittelpunkt''', M<sub>2</sub> - '''Schwerpunkt''', M<sub>3</sub> - '''Inkreismittelpunkt''' | |||
</div> | </div> | ||
{{Lösung versteckt|Du kannst den Umkreismittelpunkt herausfinden in dem du einen stumpfen Winkel im Dreieck erzeugst. Dann liegt der Umkreismittelpunkt außerhalb des Dreiecks. Wenn du nicht mehr weißt was ein stumpfer Winkel ist schaue [https://projekte.zum.de/wiki/Digitale_Werkzeuge_in_der_Schule/Rund_ums_Dreieck hier] .|Tipp anzeigen|Tipp verbergen}} |
Aktuelle Version vom 29. Oktober 2024, 08:01 Uhr
Kapitel-Informationskästchen
Basiswissen
Der Kreis, der alle Eckpunkte eines Dreiecks berührt, heißt Umkreis. Der Umkreismittelpunkt ist der Schnittpunkt der drei Mittelsenkrechten des Dreiecks. Zur Konstruktion des Umkreises genügt es, zwei Mittelsenkrechten zu konstruieren.
Der Kreis, der alle Seiten eines Dreiecks genau einmal berührt, heißt Inkreis. Der Inkreismittelpunkt ist der Schnittpunkt der drei Winkelhalbierenden des Dreiecks. Auch hier genügen zwei Winkelhalbierende zur Konstruktion des Kreises.
Der Schwerpunkt eines Kreises ist der Punkt auf dem das Dreieck balanciert werden kann. Er liegt auf dem Schnittpunkt der Seitenhalbierenden. Auf einer Seitenhalbierenden liegt der Schwerpunkt immer auf 2/3 der Strecke vom Eckpunkt bis zur gegenüberliegenden Seite.
Aufgabe 1
a) Ordne die Punkte den Geraden zu, deren Schnittpunkt sie bilden.
Mittelsenkrechte - Umkreismittelpunkt
Winkelhalbierende - Inkreismittelpunkt
Seitenhalbierende - Schwerpunkt
b) Wie kannst du dir gut merken, welcher Punkt zu welchen Geraden gehört? Notiere hierzu eine Eselsbrücke oder eine andere Merktechnik zu den drei Punkten.
Eine einfache Eselsbrücke könnte so lauten:
Schwerpunkt und Seitenhalbierende: Beides beginnt mit "S".
Inkreis und Winkelhalbierende: In beidem kommt "ink" vor.
Umkreis und Mittelsenkrechte: In beidem kommt "m" vor.
Basiswissen
Der Umkreismittelpunkt kann als einziger Punkt auch außerhalb des Dreiecks liegen. Nämlich genau dann, wenn das Dreieck einen stumpfen Winkel hat. Bei einem Rechtwinkligen Dreieck liegt der Umkreismittelpunkt auf der gegebüberliegenden Seite (Hypotenuse). Im Kasten kannst du die Eckpunkte des Dreiecks verschieben und den Umkreismittelpunkt beobachten.
Wenn du nicht mehr weißt was ein stumpfer Winkel ist schaue hier.Aufgabe 2
Der Inkreismittelpunkt hat zu allen Seiten den gleichen Abstand.
Der Umkreismittelpunkt hat zu allen Eckpunkten den gleichen Abstand.
Der Schwerpunkt liegt immer auf 2/3 der Strecke vom Eckpunkt bis zur gegenüberliegenden Seite.
Aufgabe 3
Deine Lösung:
M1 - Umkreismittelpunkt, M2 - Schwerpunkt, M3 - Inkreismittelpunkt