Benutzer:Gabriel.cicek/Zufällige Ereignisse und ihre Wahrscheinlichkeit/Wahrscheinlichkeit bei mehrstufigen Laplace-Versuchen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(16 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 15: Zeile 15:
:<math>P(A) = \frac{\text{Anzahl der günstigen} \text{ Ergebnisse}}{\mathrm{Anzahl\ aller\ m\ddot oglichen\ Ergebnisse}}</math>
:<math>P(A) = \frac{\text{Anzahl der günstigen} \text{ Ergebnisse}}{\mathrm{Anzahl\ aller\ m\ddot oglichen\ Ergebnisse}}</math>


Am Beispiel des Münzwurfes wäre das für das Ereignis "Nach jedem Wurf zeigt die Münze Zahl"
Am Beispiel des zweifachen Münzwurfes wäre das für das Ereignis "Nach jedem Wurf zeigt die Münze Zahl":


<big>P(Z,Z) = <math>\tfrac{1}{4} </math>, weil nur ein Ergebnis auf das Ereignis zutrifft und es insgesamt vier Ergebnisse gibt.
<big>P(Z,Z) = <math>\tfrac{1}{4} </math>, weil nur ein Ergebnis auf das Ereignis zutrifft und es insgesamt vier Ergebnisse gibt.
Zeile 23: Zeile 23:


<br>
<br>
}}
{{Box|Übung|
Seite 186,
Nr.3-4
Nr.5 a)-c)
|Üben}}
'''<big>Tipps für die Aufgaben im Buch:</big>'''
'''Aufgabe 4:'''
{{Lösung versteckt|
1=
(1) Differenz ist das Ergebnis eine Subtraktion. Die Differenz von 8 und 3 ist 5.
(2) Die Summe ist das Ergebnis einer Addition. Die Summe von 1 und 3 ist 4.
(4) Das Produkt ist das Ergebnis eine Multiplikation. Das Produkt von 2 und 3 ist 6.
(5) Die Vielfachen von 3 sind 3,6,9,12,15,..., Die Vielfachen von 3 berechnest du, indem du eine ganze Zahl mit 3 multiplizierst.
|
2= Tipp  |
3= Verbergen
}}
'''<big>Lösungen für die Aufgaben im Buch:</big>'''
{{Lösung versteckt|
1=
a) Für das Baumdiagramm gibt es keine Lösung.
b) (1) 1/12
  (2) 1/4
|
2= Lösung Nr.3  |
3= Verbergen
}}
{{Lösung versteckt|
1=
Die Differenz der Augenzahlen ist größer als 2:
Günstige Wurfkombinationen: (6,1);(6,2);(6,3);(5,1);(5,2);(4,1);(1,6);(1,5);(1,4);(2,6);(2,5);(3,6)
Anzahl der günstigen Kombinationen: 12
Wahrscheinlichkeit: 12/36 = 1/3
Die Summe der Augenzahlen beträgt 8:
Günstige Wurfkombinationen: (2,6); (3,5); (4,4); (5,3); (6,2)
Anzahl der günstigen Kombinationen: 5
Wahrscheinlichkeit: 5/36
Die Summe der Augenzahlen ist kleiner als 5:
Günstige Wurfkombinationen: (1,1); (1,2); (2,1); (1,3); (2,2); (3,1)
Anzahl der günstigen Kombinationen: 6
Wahrscheinlichkeit: 6/36 = 1/6
Das Produkt der Augenzahlen beträgt 6:
Günstige Wurfkombinationen: (1,6); (2,3); (3,2); (6,1)
Anzahl der günstigen Kombinationen: 4
Wahrscheinlichkeit: 4/36 = 1/9
Die Summe der Augenzahlen ist ein Vielfaches von 3:
Günstige Wurfkombinationen: (3,3); (6,6); (1,2); (2,1); (2,4); (4,2); (3,6); (6,3); (1,5); (5,1); (4,5); (5,4)
Anzahl der günstigen Kombinationen: 12
Wahrscheinlichkeit: 12/36 = 1/3
Das Produkt der Augenzahlen ist durch 4 teilbar:
Günstige Wurfkombinationen: (1,4); (2,4); (4,1); (4,2); (2,2); (3,4); (4,3); (2,6); (6,2); (4,4); (4,5); (5,4); (4,6); (6,4); (6,6)
Anzahl der günstigen Kombinationen: 15
Wahrscheinlichkeit: 15/36 = 5/12
|
2= Lösung Nr.4 |
3= Verbergen
}}
{{Lösung versteckt|
1=
a) Für das Baumdiagramm gibt es keine Lösung
S = {(RR); (RG); (RS); (GR); (GG); (GS); (SR); (SG); (SS)}
b) 1/9
c)
P(E1) = 1/3
P(E2) = 4/9
P(E3) = 3/9
P(E4) = 5/9
|
2= Lösung Nr.5  |
3= Verbergen
}}
}}

Aktuelle Version vom 18. September 2023, 19:18 Uhr


Merke


Sind bei einem mehrstufigen Zufallsversuch die Wahrscheinlichkeiten auf jeder Stufe gleich groß, so ist der Versuch ein mehrstufiger Laplace-Versuch.

Beispiel:
Es wird eine Münze zweimal geworfen. Mögliche Ergebnisse pro Wurf sind Kopf (K) und Zahl (Z).

Baumdiagramm und Wahrscheinlichkeiten der Stufen:

Baumdiagramm Münzwurf.jpg


Wie bei einstufigen Laplace- Zufallsversuchen, ist auch hier die Wahrscheinlichkeit für ein Ereignis:

Am Beispiel des zweifachen Münzwurfes wäre das für das Ereignis "Nach jedem Wurf zeigt die Münze Zahl":

P(Z,Z) = , weil nur ein Ergebnis auf das Ereignis zutrifft und es insgesamt vier Ergebnisse gibt.





Übung

Seite 186,

Nr.3-4

Nr.5 a)-c)


Tipps für die Aufgaben im Buch:



Aufgabe 4:

(1) Differenz ist das Ergebnis eine Subtraktion. Die Differenz von 8 und 3 ist 5.


(2) Die Summe ist das Ergebnis einer Addition. Die Summe von 1 und 3 ist 4.


(4) Das Produkt ist das Ergebnis eine Multiplikation. Das Produkt von 2 und 3 ist 6.


(5) Die Vielfachen von 3 sind 3,6,9,12,15,..., Die Vielfachen von 3 berechnest du, indem du eine ganze Zahl mit 3 multiplizierst.


Lösungen für die Aufgaben im Buch:

a) Für das Baumdiagramm gibt es keine Lösung. b) (1) 1/12

(2) 1/4

Die Differenz der Augenzahlen ist größer als 2:

Günstige Wurfkombinationen: (6,1);(6,2);(6,3);(5,1);(5,2);(4,1);(1,6);(1,5);(1,4);(2,6);(2,5);(3,6)

Anzahl der günstigen Kombinationen: 12

Wahrscheinlichkeit: 12/36 = 1/3


Die Summe der Augenzahlen beträgt 8:

Günstige Wurfkombinationen: (2,6); (3,5); (4,4); (5,3); (6,2)

Anzahl der günstigen Kombinationen: 5

Wahrscheinlichkeit: 5/36


Die Summe der Augenzahlen ist kleiner als 5:

Günstige Wurfkombinationen: (1,1); (1,2); (2,1); (1,3); (2,2); (3,1)

Anzahl der günstigen Kombinationen: 6

Wahrscheinlichkeit: 6/36 = 1/6


Das Produkt der Augenzahlen beträgt 6:

Günstige Wurfkombinationen: (1,6); (2,3); (3,2); (6,1)

Anzahl der günstigen Kombinationen: 4

Wahrscheinlichkeit: 4/36 = 1/9


Die Summe der Augenzahlen ist ein Vielfaches von 3:

Günstige Wurfkombinationen: (3,3); (6,6); (1,2); (2,1); (2,4); (4,2); (3,6); (6,3); (1,5); (5,1); (4,5); (5,4)

Anzahl der günstigen Kombinationen: 12

Wahrscheinlichkeit: 12/36 = 1/3


Das Produkt der Augenzahlen ist durch 4 teilbar:

Günstige Wurfkombinationen: (1,4); (2,4); (4,1); (4,2); (2,2); (3,4); (4,3); (2,6); (6,2); (4,4); (4,5); (5,4); (4,6); (6,4); (6,6)

Anzahl der günstigen Kombinationen: 15

Wahrscheinlichkeit: 15/36 = 5/12

a) Für das Baumdiagramm gibt es keine Lösung


S = {(RR); (RG); (RS); (GR); (GG); (GS); (SR); (SG); (SS)}

b) 1/9

c) P(E1) = 1/3 P(E2) = 4/9 P(E3) = 3/9

P(E4) = 5/9