Benutzer:Meike WWU-12/Entwurf des Lernpfadkapitels: Unfallforensiker*in: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(27 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 111: | Zeile 111: | ||
{{Lösung versteckt|1= Es gilt Einlaufwinkel=Auslaufwinkel. Daher reicht es, einen der beiden Winkel zu messen. | {{Lösung versteckt|1= Es gilt Einlaufwinkel=Auslaufwinkel. Daher reicht es, einen der beiden Winkel zu messen. | ||
Es ergibt sich '''Einlaufwinkel=Auslaufwinkel≈<math> | Es ergibt sich '''Einlaufwinkel=Auslaufwinkel≈<math>36^{\circ}</math>'''. | ||
|2=Lösung|3=Lösung verbergen}} | |2=Lösung|3=Lösung verbergen}} | ||
Zeile 133: | Zeile 133: | ||
|3=Kurzinfo}} | |3=Kurzinfo}} | ||
{{Box | 1=Merksatz: Formel für die kinetische Energie | 2=Die kinetische Energie bestimmt man mit der Formel <math> | {{Box | 1=Merksatz: Formel für die kinetische Energie | 2=Die kinetische Energie bestimmt man mit der Formel <math>E_{\text{kin}} = \frac{m \cdot v^2}{2}</math>, wobei die kinetische Energie <math>E_{\text{kin}}</math> in Joule angegeben wird, die Masse <math>m</math> in kg und die Geschwindigkeit <math>v</math> in s. Es gilt außerdem <math>1 J= 1\cdot \frac{kg \cdot m^2}{s^2}</math>.| 3=Merksatz |Farbe={{Farbe|grün|dunkel}}}} | ||
Das Auto im Unfall aus Aufgabe | Das Auto im Unfall aus Aufgabe 1 wiegt ca. <math>1,4</math> t und ist nach kurzem Abbremsen vor dem Unfall noch <math>63</math> km/h gefahren. | ||
'''Bestimme die kinetische Energie beim Aufprall und schreibe die Rechnung auf dem Arbeitsblatt auf.''' | |||
{{Lösung versteckt|1= Zunächst müssen alle Werte in die richtigen Einheiten umgerechnet werden. Erinnerung: | |||
<math>1</math> t <math>= 1000</math> kg. | |||
Um km/h in m/s umzurechnen, multiplizierst du am besten erst mit <math>1000</math>, dann erhältst du einen Wert in m/h und dividierst dann durch <math>3600</math> bzw. zweimal durch <math>60</math>, denn eine Stunde sind <math>3600</math> Sekunden. | |||
|2=Tipp|3=Tipp verbergen}} | |||
{{Lösung versteckt|1= | |||
Als erstes solltest du die Werte umrechnen: | |||
Da <math>1</math> t <math>= 1000</math> kg gilt, gilt <math>1,4</math> t<math>= 1400</math> kg. | |||
Zudem gilt: | |||
<math>\begin{align} | |||
63 \frac{km}{h} &= 63000 \frac{m}{h} \\ | |||
&= 1050 \frac{m}{min} \\ | |||
&= 17,5 \frac{m}{s} | |||
\end{align}</math>, | |||
wobei im ersten Schritt durch Multiplikation mit <math>1000</math> km in m umgewandelt wurden und im zweiten und dritten Schritt jeweils durch Division durch <math>60</math> Stunden in Minuten bzw. Minuten in Sekunden umgewandelt wurden. | |||
Durch Einsetzen der Werte in die Lösung ergibt sich: | |||
<math>\begin{align} | |||
E_{\text{kin}} &= \frac{m \cdot v^2}{2} \\ | |||
&= \frac{1400 \cdot 17.5^2}{2} \\ | |||
&= 214.375 [J] \\ | |||
\end{align}</math> | |||
|2=Lösung|3=Lösung verbergen}} | |||
| Arbeitsmethode | Farbe=#CD2990 }} | | Arbeitsmethode | Farbe=#CD2990 }} | ||
Zeile 159: | Zeile 188: | ||
</gallery> | </gallery> | ||
Berechne | '''Berechne, wie groß die beschädigte Fläche, im Bild die rot markierte Fläche, in etwa ist (in m<sup>2</sup>). Runde dabei bei jedem Rechenschritt auf zwei Nachkommastellen und schreibe den Rechenweg auf dem Arbeitsblatt auf.''' | ||
{{Lösung versteckt|1= Um die Fläche | {{Lösung versteckt|1= Um die Fläche ungefähr zu berechnen, kann man die Form des Autos in kleinere Flächen aufteilen und durch Kreise, Dreiecke und Rechtecke annähern. Zum Beispiel so: | ||
<gallery widths="500" heights="250"> | <gallery widths="500" heights="250"> | ||
Zeile 167: | Zeile 196: | ||
</gallery> | </gallery> | ||
Anschließend werden die Teilflächen addiert (die grün umrandeten Flächen) bzw. die halbe Reifenfläche (Hälfte des rot umrundeten | Anschließend werden die Teilflächen addiert (die grün umrandeten Flächen) bzw. die halbe Reifenfläche (Hälfte des rot umrundeten Kreises) wird abgezogen.|2=Tipp|3=Tipp verbergen}} | ||
{{Lösung versteckt|1= | |||
Wir berechnen mit der im Tipp gegebenen Einteilung: | |||
<gallery widths="500" heights="250"> | |||
Datei:Flächeninhalt Auto mit Markierung.jpg | |||
</gallery> | |||
Dann gilt: <math>\text{A1}</math> ist ein rechtwinkliges Dreieck mit einer Höhe von <math>0.2 \text{m}</math>und einer Grundseite der Länge <math>1.2 \text{m}</math>, somit <math>\text{A1} = \frac{1.2 \cdot 0.2}{2} = 0.12</math> [m<sup>2</sup>] | |||
<math>\text{A2}</math> ist ein Rechteck mit einer Länge von <math>1.2</math> m und einer Höhe von <math>1.1 \text{m}- 0.2 \text{m} = 0.9 \text{m}</math>, also <math>\text{A2} = 1.2 \cdot 0.9 = 1.08 </math> [m<sup>2</sup>]. | |||
<math>\text{A3}</math> ist ein Rechteck mit einer Länge von <math>2.7 \text{m} - 1.2 \text{m} = 1.5 \text{m}</math> und einer Höhe von <math>1.1 \text{m}</math>, also <math>\text{A3} = 1.5 \cdot 1.1 = 1.65 </math> [m<sup>2</sup>]. | |||
Fläche <math>\text{A4}</math> ist ein Kreis mit Radius <math>0.9 \text{m}:2 = 0.45 \text{m}</math>, also <math>\text{A4} = \pi \cdot 0.45^2 \approx 0.64 </math> [m<sup>2</sup>]. | |||
Insgesamt ergibt sich somit für die Fläche A vom Auto: | |||
<math>\begin{align} | |||
A &= A1 + A2 + A3 - \frac{A4}{2} \\ | |||
&= 0.12 + 1.08 + 1.65 - 0.32 \\ | |||
&= 2.53 | |||
\end{align}</math> | |||
Je nachdem, wie du die Fläche angenähert hast, kann deine Lösung etwas von dieser abweichen. Nach dieser Näherungslösung ist die beschädigte Fläche ca. <math>2.53</math> m<sup>2</sup> groß.|2=Lösung|3=Lösung verbergen}} | |||
|Arbeitsmethode | Farbe={{Farbe|orange}} }} | |Arbeitsmethode | Farbe={{Farbe|orange}} }} | ||
Zeile 181: | Zeile 232: | ||
|3=Kurzinfo}} | |3=Kurzinfo}} | ||
Bestimme den Prozentsatz der Reparaturkosten an dem Wert des Autos vor dem Unfall. Berechne dazu zunächst den Restwert des Autos vor dem | '''Bestimme den Prozentsatz der Reparaturkosten an dem Wert des Autos vor dem Unfall. Berechne dazu zunächst den Restwert des Autos vor dem Unfall (Schritt 1) und anschließend den Prozentsatz der Reperaturkosten daran (Schritt 2) und trage alle Werte in die Tabelle ein. Übertrage nach dem Überprüfen die richtigen Werte auf das Arbeitsblatt.''' | ||
{{LearningApp|width=100%|height=500px|app=pgqvqcz9j23}} | {{LearningApp|width=100%|height=500px|app=pgqvqcz9j23}} | ||
Zeile 191: | Zeile 242: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Wir nutzen die Formel W=p | Wir nutzen die Formel <math>W = p \cot G</math>. | ||
Zu dem '''Restwert''' vor dem Unfall: | Zu dem '''Restwert''' vor dem Unfall: | ||
Es gilt <math>p=70 | Es gilt <math>\text{p} =70 % =0.7</math>, da der Restwert und nicht der Verlust berechnet werden soll, und <math>\text{G} =21000</math> [€]. | ||
Somit <math>W=14700</math> [€] | Somit <math>\text{W} =14700</math> [€] | ||
Zum '''Prozentsatz''' der Reparaturkosten am Restwert: | Zum '''Prozentsatz''' der Reparaturkosten am Restwert: | ||
<math>\begin{align} | <math>\begin{align} | ||
W | \text{W} = \text{p} \cdot \text{G} \Leftrightarrow \text{p} = \frac{\text{W}}{\text{G}} | ||
\end{align}</math> | \end{align}</math>. | ||
Da der Prozentsatz der Raperaturkosten am Restwert berechnet werden soll, ist der neue Grundwert allerdings <math>G=14700</math> und der Prozentwert ist <math>W=2500</math>. | |||
Somit gilt <math> | Da der Prozentsatz der Raperaturkosten am Restwert berechnet werden soll, ist der neue Grundwert allerdings <math>\text{G} =14700</math> und der Prozentwert ist <math>\text{W} =2500</math>. | ||
Somit gilt <math>\text{p} \approx 0.17 =17 %</math>. | |||
Der | Der Prozentsatz der Reparaturkosten am Restwert des Autos beträgt also ca. <math>17 %</math>. | ||
|2=Lösungsweg|3=Lösungsweg verbergen}} | |2=Lösungsweg|3=Lösungsweg verbergen}} | ||
| Arbeitsmethode}} | | Arbeitsmethode}} | ||
Zeile 211: | Zeile 263: | ||
{{Box | Aufgabe 2e⭐: Geschwindigkeit berechnen | | {{Box | Aufgabe 2e⭐: Geschwindigkeit berechnen | | ||
[[Datei:Unfallort Bremsweg.png|mini]] | [[Datei:Unfallort Bremsweg.png|mini]] | ||
Am Unfallort ist aufgefallen, dass ein zweites | Am Unfallort ist aufgefallen, dass ein zweites Fahrzeug nur knapp vor dem verunfallten Wagen zum Stehen kam. | ||
Im Rahmen der Unfallanalyse untersuchst du als Unfallforensiker:in, ob sich die fahrende Person im zweiten Auto an die vorgeschriebene | Im Rahmen der Unfallanalyse untersuchst du als Unfallforensiker:in, ob sich die fahrende Person im zweiten Auto an die vorgeschriebene Geschwindigkeitsbegrenzung gehalten hat. Um dies herauszufinden, wird die Länge der entstandenen Bremsspur gemessen. So kann mit wenigen Schritten ermittelt werden, wie hoch die Geschwindigkeit vor dem Unfall war. | ||
{{Box | {{Box | ||
Zeile 221: | Zeile 273: | ||
Es ist eine Bremsspur mit einer Länge von <math>49</math> m entstanden. | Es ist eine Bremsspur mit einer Länge von <math>49</math> m entstanden. | ||
'''Berechne, wie hoch die Geschwindigkeit | '''Berechne, wie hoch die Geschwindigkeit des zweiten Autos war.''' | ||
'''Kreuze auf dem Arbeitsblatt an, ob sich die fahrende Person an die vorgeschriebene | |||
'''Kreuze auf dem Arbeitsblatt an, ob sich die fahrende Person an die vorgeschriebene Geschwindigkeitsbegrenzung von <math>50</math> km/h gehalten hat.''' | |||
{{Lösung versteckt|1=Nutze Äquivalenzumformungen! Du weißt, dass der Bremsweg <math>49</math> m betrug. Löse die Gleichung <math>49 = \frac{x^2}{100}</math> nach <math>x</math> auf, um die Geschwindigkeit zu bestimmen.|2=Tipp 1|3=Tipp 1 verbergen}} | {{Lösung versteckt|1=Nutze Äquivalenzumformungen! Du weißt, dass der Bremsweg <math>49</math> m betrug. Löse die Gleichung <math>49 = \frac{x^2}{100}</math> nach <math>x</math> auf, um die Geschwindigkeit zu bestimmen.|2=Tipp 1|3=Tipp 1 verbergen}} | ||
{{Lösung versteckt|1=Multipliziere zunächst beide Seiten der Gleichung mit <math>100</math>.|2=Tipp 2|3=Tipp 2 verbergen}} | {{Lösung versteckt|1=Multipliziere zunächst beide Seiten der Gleichung mit <math>100</math>.|2=Tipp 2|3=Tipp 2 verbergen}} | ||
{{Lösung versteckt|1=Ziehe schließlich auf beiden Seiten der Gleichung die Wurzel. Entscheide, welches Ergebnis im Sachzusammenhang geeignet ist.|2=Tipp 3|3=Tipp 3 verbergen}} | {{Lösung versteckt|1=Ziehe schließlich auf beiden Seiten der Gleichung die Wurzel. Entscheide, welches Ergebnis im Sachzusammenhang geeignet ist.|2=Tipp 3|3=Tipp 3 verbergen}} | ||
{{Lösung versteckt|1= | |||
<math>\begin{align} | |||
& & b(x) &= \frac{x^2}{100} & &\mid \text{Einsetzen}\\ | |||
\Leftrightarrow & & 49 &= \frac{x^2}{100} & &\mid \cdot 100\\ | |||
\Leftrightarrow & & 49 \cdot 100 &= x^2 & &\mid \surd\\ | |||
\Leftrightarrow & & \pm \sqrt{4900} &= x & &\mid \text{Berechnen}\\ | |||
\Leftrightarrow & & \pm 70 &= x | |||
\end{align}</math> | |||
Da es keine negativen Geschwindigkeiten gibt, eignet sich im Sachzusammenhang nur die Lösung <math>x = 70</math>. Somit ist aus der Bremsspur von <math>49</math> m auf eine Geschwindigkeit des zweiten Autos von <math>70</math> km/h zu schließen. Die fahrende Person hat sich also nicht an die vorgegebene Geschwindigkeitsbegrenzung von <math>50</math> km/h gehalten. | |||
|2=Lösung|3=Lösung verbergen}} | |||
| Arbeitsmethode}} | | Arbeitsmethode}} | ||
Aktuelle Version vom 26. April 2023, 14:19 Uhr
Unfallforensiker:in
Aufgabe 1: Unfallrekonstruktion
Aufgabe 2: Unfallgutachten