Laplace Aufgaben/Larissa: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
(8 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 4: | Zeile 4: | ||
Bei n Ergebnissen ist die Wahrscheinlichkeit in einem Laplace-Experiment für jedes Ergebnis <math>\tfrac{1}{n}</math>. | Bei n Ergebnissen ist die Wahrscheinlichkeit in einem Laplace-Experiment für jedes Ergebnis <math>\tfrac{1}{n}</math>. | ||
| Merksatz}} | |||
''' | {{Box | Laplace-Wahrscheinlichkeit | | ||
| | |||
'''Pfadadditionsregel''': Die Wahrscheinlichkeit von mehreren Ergebnissen ergibt sich durch Addition der Wahrscheinlichkeit von jedem einzelnen Ergebnis. | |||
| Merksatz}} | |||
{{Box | Aufgabe 1: Kartenspiel | | {{Box | Aufgabe 1: Kartenspiel | | ||
Bei einem Skatkartenspiel gibt es 12 Bildkarten. Es gibt 4 Buben, 4 Damen und 4 Könige. Karo und Herz werden auch „rote Karten“ genannt und Pik und Kreuz auch „schwarze Karten“. Berechne nun die Wahrscheinlichkeit, mit der du die angegebene Karte aus den 32 Spielkarten ziehst. | Bei einem Skatkartenspiel gibt es 12 Bildkarten. Es gibt 4 Buben, 4 Damen und 4 Könige. Karo und Herz werden auch „rote Karten“ genannt und Pik und Kreuz auch „schwarze Karten“. Berechne nun die Wahrscheinlichkeit, mit der du die angegebene Karte aus den 32 Spielkarten ziehst. | ||
[[Datei:Skat-Kartenspiel.jpg|mini]] | |||
'''a)''' Dame | '''a)''' Dame | ||
Zeile 52: | Zeile 55: | ||
Bei einem Spieleabend wird Scrabble gespielt. Sieh dir die beiden bereits gelegten Wörter an. Die dafür verwendeten Steine werden in einen leeren Sack gelegt. Gehe davon aus, dass die Spielsteine alle dieselbe Größe und Beschaffenheit haben. | Bei einem Spieleabend wird Scrabble gespielt. Sieh dir die beiden bereits gelegten Wörter an. Die dafür verwendeten Steine werden in einen leeren Sack gelegt. Gehe davon aus, dass die Spielsteine alle dieselbe Größe und Beschaffenheit haben. | ||
[[Datei:Scrabble.jpg|mini]] | |||
Wie hoch ist nun die Wahrscheinlichkeit folgende Steine zu ziehen? | Wie hoch ist nun die Wahrscheinlichkeit folgende Steine zu ziehen? | ||
Zeile 106: | Zeile 109: | ||
'''b)''' …die Differenz der Augenzahlen gleich drei ist | '''b)''' …die Differenz der Augenzahlen gleich drei ist? | ||
{{Lösung versteckt|1= Überlege dir, welche Zahlenkombinationen zu einer Differenz von 3 führen. Denke insbesondere daran, dass die einzelnen Kombinationen jeweils in zwei unterschiedlichen Reihenfolgen gewürfelt werden können.|2=Tipp |3=Tipp}} | {{Lösung versteckt|1= Überlege dir, welche Zahlenkombinationen zu einer Differenz von 3 führen. Denke insbesondere daran, dass die einzelnen Kombinationen jeweils in zwei unterschiedlichen Reihenfolgen gewürfelt werden können.|2=Tipp |3=Tipp}} | ||
'''c)''' …die Summe der Augenzahlen eine Primzahl ist | '''c)''' …die Summe der Augenzahlen eine Primzahl ist? | ||
{{Lösung versteckt|1=Primzahl: ganze Zahl, die größer als 1 und nur durch 1 und sich selbst teilbar ist. | {{Lösung versteckt|1=Primzahl: ganze Zahl, die größer als 1 und nur durch 1 und sich selbst teilbar ist. | ||
Zeile 145: | Zeile 148: | ||
Markus und Julia spielen „Mensch ärgere dich nicht“. Sieh dir die aktuelle Spielsituation an. | Markus und Julia spielen „Mensch ärgere dich nicht“. Sieh dir die aktuelle Spielsituation an. | ||
[[Datei:Mensch ärgere dich nicht2.jpg|mini]] | |||
Die | Die rote Spielfigur gehört Markus und die grüne Julia. | ||
Julia sagt: „Deine Chance in dein Haus zu kommen ist beim nächsten Wurf viel größer als meine.“ | Julia sagt: „Deine Chance in dein Haus zu kommen ist beim nächsten Wurf viel größer als meine.“ | ||
Zeile 153: | Zeile 156: | ||
'''a)''' Hat Julia recht mit ihrer Behauptung? | '''a)''' Hat Julia recht mit ihrer Behauptung? | ||
{{Lösung versteckt|1=Überlege dir, welche Zahlen Markus und Julia würfeln können, um in das Haus zu kommen.|2=Tipp | {{Lösung versteckt|1=Überlege dir, welche Zahlen Markus und Julia würfeln können, um in das Haus zu kommen.|2=Tipp |3=Tipp}} | ||
'''b)''' Ändert sich etwas an der Behauptung, wenn beide einmal an der Reihe waren, aber nicht ins Haus gesetzt werden konnte? | '''b)''' Ändert sich etwas an der Behauptung, wenn beide einmal an der Reihe waren, aber nicht ins Haus gesetzt werden konnte? | ||
Zeile 163: | Zeile 166: | ||
|2=Tipp3 |3=Tipp}} | |2=Tipp3 |3=Tipp}} | ||
|2=Tipp2 |3=Tipp}} | |2=Tipp2 |3=Tipp}} | ||
|2= | |2=Tipp |3=Tipp}} | ||
{{Lösung versteckt|1='''a)''' Markus benötigt eine 1, 2 oder 3, um in das Haus zu kommen. | {{Lösung versteckt|1='''a)''' Markus benötigt eine 1, 2 oder 3, um in das Haus zu kommen. | ||
Zeile 231: | Zeile 234: | ||
|2=Lösung b)|3=Lösung}} | |2=Lösung b)|3=Lösung}} | ||
| | | Arbeitsmethode | Farbe={{Farbe|grün|dunkel}} }} |
Aktuelle Version vom 21. November 2020, 09:30 Uhr
Laplace-Experimente