Benutzer:Nina WWU-6/lineareGleichungssysteme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 108: | Zeile 108: | ||
|Arbeitsmethode}} | |Arbeitsmethode}} | ||
{{Box|Merke| Du verwendest dieses Verfahren bei '''Gleichungssystemen mit 2 oder mehr Variablen'''. Dabei stellst du die Gleichungen so um, das in einer Gleichung nur eine Variable, in der zweiten Gleichung zwei Variablen und in der dritten Gleichung alle drei Variablen vorkommen. Das bezeichnet man auch als '' | {{Box|Merke| Du verwendest dieses Verfahren bei '''Gleichungssystemen mit 2 oder mehr Variablen'''. Dabei stellst du die Gleichungen so um, das in einer Gleichung nur eine Variable, in der zweiten Gleichung zwei Variablen und in der dritten Gleichung alle drei Variablen vorkommen. Das bezeichnet man auch als ''obere '''Dreiecksmatrix'''''. Nun kannst du mit der ersten Gleichung so vorgehen wie bei einer Gleichung mit nur einer Variable und die Lösung dann in die zweite Gleichung einsetzen. Die Lösung dieser Gleichung setzt du dann in die letzte Gleichung ein. Bei vier Gleichungen mit vier Variablen gehst du analog vor.|Merke}} | ||
===Aufgaben=== | ===Aufgaben=== | ||
Zeile 178: | Zeile 178: | ||
| Üben}} | | Üben}} | ||
{{Box| Alles klar?| Bearbeite den Lückentext|Üben}} | {{Box| Alles klar?| Bearbeite den Lückentext|Üben}} | ||
{{LearningApp|width:100%|height: | {{LearningApp|width:100%|height:250px|app=10753102}} |
Aktuelle Version vom 14. April 2020, 13:53 Uhr
Lineare Gleichungssysteme
Einführung
Auf dieser Seite lernst Du, wie Du Gleichungssysteme mit mehr als einer Variablen lösen kannst. Falls Du dir noch unsicher bist, wie man eine Gleichung mit nur einer Variable löst, versuche folgendes Beispiel zu lösen. Falls Du das aber noch kannst, dann überspringe das Beispiel gerne.
Unterschiedliche Vorgehensweisen
Das Einsetzungsverfahren
Das Gauß-Verfahren
Aufgaben