Benutzer:Klara WWU-6/Von der Randfunktion zur Integralfunktion: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung |
K (Andrea Schellmann verschob die Seite Klara WWU-6/Von der Randfunktion zur Integralfunktion nach Benutzer:Klara WWU-6/Von der Randfunktion zur Integralfunktion) |
||
(7 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
==Diagnoseaufgaben== | |||
{ Welche Integrationsmethode wurde bei dieser Rechnung verwendet? | |||
<math> \int x \cdot cos(x) dx = [x \cdot sin(x)] - \int 1 \cdot sin(x) dx </math> } | |||
<br /> | |||
==Infoboxen== | ==Infoboxen== | ||
Zeile 88: | Zeile 97: | ||
{{Box| Textaufgabe: Zahn-Logo für eine Praxis| In einer Zahnarztpraxis soll ein neues Logo entworfen werden. Dazu wurde die nebenstehende Zeichnung angefertigt, welche durch die Funktionen <math> f(x)=- \frac{x}{2} + 2 </math> und <math> g(x)= x^4- \frac{15}{4} * x^2 - 1 </math> das Zahnlogo bildet. Dabei entspricht eine Längeneinheit in dem Graphen 1 cm. Nun soll dieses Logo mit einer Dicke von 1 mm aus Silber (<math> 1 cm^2 </math> Silber wiegt 10,5 g) produziert werden. Wie schwer wird das Logo dann werden?|}} | |||
<iframe src="https://learningapps.org/watch?v=p0v4crp2j20" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | |||
{{Box| Textaufgabe: Zahn-Logo für eine Praxis| In einer Zahnarztpraxis soll ein neues Logo entworfen werden. Dazu wurde die nebenstehende Zeichnung angefertigt, welche durch die Funktionen <math> f(x)=- \frac{x}{2} + 2 </math> und <math> g(x)= x^4- \frac{15}{4} * x^2 - 1 </math> das Zahnlogo bildet. Dabei entspricht eine Längeneinheit in dem Graphen 1 cm. Nun soll dieses Logo mit einer Dicke von 1 mm aus Silber (<math> 1 cm^2 </math> Silber wiegt 10,5 g) produziert werden. Wie schwer wird das Logo dann werden?| Üben}} | |||
{{Lösung versteckt| Zuerst muss die Fläche des Logos berechnet werden. Dazu wird dieses Integral genötigt: <math> \int_{-2}^2 f(x) + g(x)\, dx </math>|Tipp 1|Tipp 1}} | {{Lösung versteckt| Zuerst muss die Fläche des Logos berechnet werden. Dazu wird dieses Integral genötigt: <math> \int_{-2}^2 f(x) + g(x)\, dx </math>|Tipp 1|Tipp 1}} | ||
Zeile 103: | Zeile 118: | ||
Das fertige Logo aus Silber wiegt 3,36 g.| Lösungsweg + Lösung anzeigen| Lösungsweg + Lösung ausblenden}} | Das fertige Logo aus Silber wiegt 3,36 g.| Lösungsweg + Lösung anzeigen| Lösungsweg + Lösung ausblenden}} | ||
<iframe src="https://learningapps.org/watch?v=pa1tk2o5v20" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | <iframe src="https://learningapps.org/watch?v=pa1tk2o5v20" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> |
Aktuelle Version vom 4. Mai 2020, 06:23 Uhr
Diagnoseaufgaben
{ Welche Integrationsmethode wurde bei dieser Rechnung verwendet? }
Infoboxen
Falls du eine ausführliche Erklärung mit einem Beispiel benötigst,klicke hier.
Beispiel zur partielle Integration :
lässt sich leicht integrieren. Also und
lässt sich leicht ableiten. Also und
Nun müssen unsere Funktionen und deren Ableitungen in die oben genannte Formel eingesetzt werden:
Die integrierte Funktion bzw. Stammfunktion von lautet somit:
Aufgaben
a)
Nutze die partielle Integration
Setze die leicht abzuleitende Funktion und die leicht zu integrierende Funktion
b)
Nutze die Integration durch Substitution
Setze die innerer Funktion und leite sie nach x ab
c)
Nutze die Integration durch Substitution
Setze die innerer Funktion und leite sie nach x ab
Zuerst muss die Fläche des Logos berechnet werden. Dazu wird dieses Integral genötigt:
Hast du daran gedacht, alle Einheiten einheitlich anzupassen? Die Dicke von 1 mm muss auf jeden Fall noch in cm umgerechnet werden.
Wenn du die Fläche des Logos wie in Tipp 1 berechnet hast, kannst du das nun durch das Produkt von und der Dicke (beachte Tipp 2!) berechnen
Das fertige Logo aus Silber wiegt 3,36 g.