Benutzer:Anja WWU-5/Testseite: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung
Markierung: 2017-Quelltext-Bearbeitung
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 154: Zeile 154:
Hinweis: Einer Funktion können mehrere Punkte zugeordnet sein, aber jedem Punkt ist nur genau eine Funktion zugeordnet.
Hinweis: Einer Funktion können mehrere Punkte zugeordnet sein, aber jedem Punkt ist nur genau eine Funktion zugeordnet.


{{LearningApp|width:100%|height:700px|app=p446x08nn19}}{{Lösung versteckt|1 = Beginne mit Punkten, die du leichter zuordnen kannst.|2=Tipp 1|3=Tipp 1}}
{{LearningApp|width:100%|height:700px|app=p446x08nn19}}


{{Lösung versteckt|1 = Überlege, wie du feststellen kannst, welchen Funktionswert die Funktionen an einer bestimmten Stelle x annehmen.|2=Tipp 2|3=Tipp 2}}{{Lösung versteckt|1 = Wir setzen beispielhaft den x-Wert des Punktes <math>(-1|1)</math> in die Funktion <math>f(x) = 2x + 3</math> ein und prüfen den Funktionswert. Dann ergibt sich: <math>f(-1) = 2 \cdot (-1) + 3 = -2 + 3 = 1</math>. Der Punkt liegt also auf dem Graphen der Funktion.<br />Nun setzen wir in dieselbe Funktion noch den x-Wert des Punktes <math>(2|10)</math> ein. Es ergibt sich: <math>f(2) = 2 \cdot 2 + 3 = 4 + 3 = 7</math>. Der Funktionswert an der Stelle 2 ist nicht 10, sondern 7. Der Punkt <math>(2|10)</math> liegt also nicht auf dem Graphen.<br /> Für die anderen Punkte und Funktionen geht man genauso vor und erhält:<br /> Auf dem Graphen der Funktion <math>f(x) = 2x + 3</math> liegen die Punkte: <math>(-1|1)</math>,<math>(0|3)</math>,<math>(2|7)</math>,<math>(1|5)</math>.<br />Auf dem Graphen der Funktion <math>f(x) = -x + 12</math> liegen die Punkte: <math>(2|10)</math>,<math>(12|0)</math>,<math>(\frac{7}{2}|\frac{17}{2})</math>,<math>(9|3)</math>.<br />Auf dem Graphen der Funktion <math>f(x) = -\frac{2}{3}x-\frac{5}{3}</math> liegen die Punkte: <math>(-1|-1)</math>,<math>(5|-5)</math>.<br />Auf dem Graphen der Funktion <math>f(x) = \frac{3}{8}</math> liegen die Punkte: <math>(4|\frac{3}{8})</math>,<math>(9|\frac{9}{24})</math>.<br />|2 = Lösung|3 = Lösung}}
{{Lösung versteckt|1 = Setze die x-Koordinaten der Punkte in die Funktionen ein und vergleiche den Funktionswert mit den y-Koordinaten der Punkte|2=Tipp|3=Tipp}}
 
{{Lösung versteckt|1 =  
* Auf dem Graphen der Funktion <math>f(x) = 2x + 3</math> liegen die Punkte: <math>(-1|1)</math>, <math>(0|3)</math>, <math>(2|7)</math>, <math>(1|5)</math>.
* Auf dem Graphen der Funktion <math>f(x) = -x + 12</math> liegen die Punkte: <math>(2|10)</math>, <math>(12|0)</math>, <math>(\frac{7}{2}|\frac{17}{2})</math>, <math>(9|3)</math>.
* Auf dem Graphen der Funktion <math>f(x) = -\frac{2}{3}x-\frac{5}{3}</math> liegen die Punkte: <math>(-1|-1)</math>, <math>(5|-5)</math>.
* Auf dem Graphen der Funktion <math>f(x) = \frac{3}{8}</math> liegen die Punkte: <math>(4|\frac{3}{8})</math>, <math>(9|\frac{9}{24})</math>.
 
Beispielhafter Lösungsweg:
* Wir setzen die x-Koordinate des Punktes <math>(-1|1)</math> in die Funktion <math>f(x) = 2x + 3</math> ein und berechnen den Funktionswert:
** <math>f(-1) = 2 \cdot (-1) + 3 = -2 + 3 = 1</math>.
** Der Punkt liegt also auf dem Graphen der Funktion.
* Nun setzen wir in dieselbe Funktion noch den x-Wert des Punktes <math>(2|10)</math> ein und berechnen wieder den Funktionswert:
** <math>f(2) = 2 \cdot 2 + 3 = 4 + 3 = 7</math>.
** Der Funktionswert an der Stelle 2 ist nicht 10, sondern 7.
** Der Punkt <math>(2|10)</math> liegt also nicht auf dem Graphen.
|2 = Lösung|3 = Lösung}}
|3=Arbeitsmethode}}
|3=Arbeitsmethode}}

Aktuelle Version vom 25. Oktober 2019, 18:01 Uhr

Spielwiese

Schreiben im Wiki

Neben normalem Text kann man auch kursiven oder fett gedruckten Text schreiben. Ebenso ist eine Kombination aus beidem möglich. Grüner Text ist etwas schwieriger und funktioniert über die Quelltextbearbeitung.

Vorlagen

Aufgabe
beliebiger Inhalt
Übung
beliebiger Inhalt
Merksatz
beliebiger Inhalt

Dateien

Dies ist das neue Logo der WWU Münser.

Interaktive Applets


Kombinationen

Merke
Bei linearen Funktionen der Form gibt den Y-Achsenabschnitt des Graphen an.


Arbeitsmethode

Bestimme die y-Achsenabschnitte folgender Funktionen:

(1) ,          (2)      und     (3)  ?

Test für unseren Lernpfad

Das Steigungsdreieck

Die Steigung einer linearen Funktion bestimmt man in der Regel mit folgenden Schritten:

  1. Zunächst benötigt man zwei beliebige Punkte und .
  2. Um den Höhenunterschied der Punkte zu bestimmen, benötigt man die y-Koordinaten der Punkte und .
  3. Um den Längenunterschied der Punkte zu bestimmen, benötigt man die x-Koordinaten der Punkte und .
  4. Für die Steigung der Geraden gilt:

Lineare Funktionen - Bestimmung von Geradengleichungen

Aufgabe 4: Eine Geradengleichung mithilfe von zwei Punkten bestimmen

Gegeben seien stets zwei Punkte, durch die eine Gerade verläuft. Bestimme in deinem Heft die jeweiligen Gleichungen der Geraden in der Form .

a) Gegeben seien die Punkte und .

b) Gegeben seien die Punkte und .

c) Gegeben seien die Punkte und .

Prüfen, ob Punkte auf einer Geraden liegen

Aufgabe 5: Punkte auf dem Graphen

Prüfe für die angegebenen linearen Funktionen, welche Punkte auf dem Funktionsgraphen liegen. Arbeite zunächst im Heft und ordne dann jeder Funktion die Punkte zu, die auf ihrem Graphen liegen. Klicke dabei immer zunächst auf die Funktion und anschließend auf die zugehörigen Punkte. Je mehr Punkte du ihren Funktionen richtig zuweist, desto mehr wird sich ein Bild im Hintergrund aufdecken!
Hinweis: Einer Funktion können mehrere Punkte zugeordnet sein, aber jedem Punkt ist nur genau eine Funktion zugeordnet.