Benutzer:L.hodankov/Lineare Funktionen untersuchen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
(Inhalte reduziert und berichtigt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 34: | Zeile 34: | ||
Fällt die Funktion, "fällt" der Wanderer bergab.<br /> | Fällt die Funktion, "fällt" der Wanderer bergab.<br /> | ||
<br> | <br> | ||
Wenn die Steigung '''m''' steil ist, muss der Wanderer sehr '''m'''utig sein! | |||
Fülle den nachfolgenden Lückentext aus und übertrage ihn in deine Mappe (Goodnotes): | Fülle den nachfolgenden Lückentext aus und übertrage ihn in deine Mappe (Goodnotes): | ||
Zeile 51: | Zeile 50: | ||
{{Box|Übung | {{Box|Übung 1: Steigende und fallende Geraden|Bearbeite die nachfolgenden Apps, um dein Wissen über steigende und fallende Geraden und die Bedeutung von m in der Funktionsgleichung zu überprüfen.|Üben}} | ||
{{LearningApp|app=pcwv0txpt20|width=100%|height=400px}} | {{LearningApp|app=pcwv0txpt20|width=100%|height=400px}} | ||
{{h5p-zum|id=14434|height=300}} | {{h5p-zum|id=14434|height=300}} | ||
<br> | <br> | ||
{{Box|1=Übung | {{Box|1=Übung 2|2=Erfinde Aufgaben für deinen Sitznachbarn in der Art:<br> | ||
"Nenne mir eine proportionale Funktion, deren Graph <span style="color:green">flach</span> <span style="color:red">fällt</span>." Lösung z.B. f(x) = <span style="color:red">'''-'''</span>[[Datei:Einhalb grün.png|rahmenlos|30x30px]]x. | "Nenne mir eine proportionale Funktion, deren Graph <span style="color:green">flach</span> <span style="color:red">fällt</span>." Lösung z.B. f(x) = <span style="color:red">'''-'''</span>[[Datei:Einhalb grün.png|rahmenlos|30x30px]]x. | ||
Prüft die Antworten mit GeoGebra.|3=Meinung}} | Prüft die Antworten mit GeoGebra.|3=Meinung}} | ||
Zeile 92: | Zeile 89: | ||
{{Box|Übung | {{Box|Übung 3|Löse auf der Seite [https://www.aufgabenfuchs.de/mathematik/funktion/funktion.shtml '''Aufgabenfuchs'''] die Aufgabe | ||
*17 | |||
*18 | *18 | ||
*20 | *20 | ||
*21 | *21 | ||
|Üben}} | |Üben}} | ||
Zeile 105: | Zeile 102: | ||
{{#ev:youtube|7zYsjAdTT5M|800|center}} | {{#ev:youtube|7zYsjAdTT5M|800|center}} | ||
<br> | <br> | ||
{{Box|Übung | {{Box|Übung 4|Die Bilder zeigen dir noch einmal, wie du ein Steigungsdreieck einzeichnest und damit die Steigung m bestimmst.<br> | ||
Übertrage jeweils das Beispiel in dein Heft und bearbeite anschließend die LearningApp.|Üben}} | Übertrage jeweils das Beispiel in dein Heft und bearbeite anschließend die LearningApp.|Üben}} | ||
<br> | <br> | ||
Zeile 130: | Zeile 127: | ||
<br> | <br> | ||
{{Box|Übung | {{Box|Übung 5|Lies jeweils am Steigungsdreieck die Steigung m der Geraden ab.|Üben}} | ||
{{LearningApp|app=p3f0yxqy321|width=100%|height=800px}} | {{LearningApp|app=p3f0yxqy321|width=100%|height=800px}} | ||
{{Box|Übung | {{Box|Übung 6|Lies jeweils am Steigungsdreieck die Steigung m der Geraden ab. Verschiebe dazu den Punkt auf dem Graphen passend. | ||
Bearbeite je so viele Aufgaben, bis du mindestens 300 Punkte gesammelt hast. | Bearbeite je so viele Aufgaben, bis du mindestens 300 Punkte gesammelt hast. | ||
* [https://realmath.de/Neues/Klasse8/ursprungsgeraden/ugeradeablesen.php Level 1] | * [https://realmath.de/Neues/Klasse8/ursprungsgeraden/ugeradeablesen.php Level 1] | ||
* [https://realmath.de/Neues/Klasse8/linearefunktion/punktaufg.php Level 2]|Üben}} | * [https://realmath.de/Neues/Klasse8/linearefunktion/punktaufg.php Level 2]|Üben}} | ||
{{Box|1=Übung | {{Box|1=Übung 7|2=Löse die Aufgaben auf der Seite 5 aus dem Arbeitsheft. | ||
|3=Üben}} | |3=Üben}} | ||
Zeile 164: | Zeile 161: | ||
{{Box|Übung | {{Box|Übung 8|Lies in der nachfolgenden App jeweils den y-Achsenabschnitt b am Graphen bzw. in der Funktionsgleichung ab.|Üben}} | ||
{{LearningApp|app=pfeqzdf8521|width=100%|height=600px}} | {{LearningApp|app=pfeqzdf8521|width=100%|height=600px}} | ||
Zeile 205: | Zeile 202: | ||
{{Box|Übung | {{Box|Übung 9: Bestimmen der Funktionsgleichung einer Geraden|Ordne den Geraden die Funktionsgleichung zu. Wähle eine passende Schwierigkeit aus.|Üben}} | ||
<div class="grid"> | <div class="grid"> | ||
<div class="width-1-3">leicht (*){{LearningApp|app=phd8q7we221|width=100%|height=400px}}{{LearningApp|app=p2rwidw3t20|width=100%|height=400px}}</div> | <div class="width-1-3">leicht (*){{LearningApp|app=phd8q7we221|width=100%|height=400px}}{{LearningApp|app=p2rwidw3t20|width=100%|height=400px}}</div> | ||
Zeile 211: | Zeile 208: | ||
<div class="width-1-3">schwer (***){{LearningApp|app=p5mxjgbpt21|width=100%|height=400px}}{{LearningApp|app=ppn4q2oe320|width=100%|height=400px}}</div> | <div class="width-1-3">schwer (***){{LearningApp|app=p5mxjgbpt21|width=100%|height=400px}}{{LearningApp|app=ppn4q2oe320|width=100%|height=400px}}</div> | ||
<br> | <br> | ||
{{Box|1=Übung | {{Box|1=Übung 10|2=Gib auf der Seite realmath jeweils die Funktionsgleichung f(x) = mx+b an. Bestimme dazu m und b, wie oben beschrieben. | ||
* [https://realmath.de/Neues/Klasse8/linfkt/geradeablesen.php Übung: Funktionsgleichung ablesen]|3=Üben}}</div> | * [https://realmath.de/Neues/Klasse8/linfkt/geradeablesen.php Übung: Funktionsgleichung ablesen]|3=Üben}}</div> | ||
<br> | <br> | ||
<br> | <br> |
Version vom 13. September 2024, 11:47 Uhr
Diese Seite des Lernpfades wurde teilweise übernommen von der Seite Herta-Lebenstein-Realschule https://projekte.zum.de/wiki/Herta-Lebenstein-Realschule/Lineare_Funktionen_im_Aktiv-Urlaub . Der Autor ist Buss-Haskert. Diese Seite wurde veröffentlicht unter der Lizenz CC BY SA.
Herzlichen Dank!
SEITE IM AUFBAU !!!
Funktionsgleichung und Funktionsgraph
f(x) = mx + b Bedeutung von m und b für den Funktionsgraphen
Damit du einen Eindruck von der Bedeutung der Parameter m (Steigung) und b (y-Achsenabschnitt) der Funktionsgleichung linearer Funktionen f(x) = mx + b erhältst, verändere in der folgenden Animation mithilfe der Schieberegler die Größe von m und b. Notiere deine Beobachtungen stichpunktartig.
In der Funktionsgleichung linearer Funktionen f(x)= m·x + b haben die Parameter m und b verschiedene Bedeutungen:
b ist der y-Achsenabschnitt, im Punkt P(0|b) schneidet die Gerade die y-Achse.
Nun schauen wir uns die Steigung m genauer an. Dazu wählen wir den y-Achsenabschnitt b = 0, die Gerade geht also durch den Ursprung (0|0).
Erinnerung: Diese Funktionen heißen "proportionale Funktionen", da ihr Graph eine Ursprungsgerade ist.
Die Steigung m
Anschaulich vorstellen kannst du dir, dass die Funktion steigt, wenn der Wanderer den Berg hochsteigen muss.
Fällt die Funktion, "fällt" der Wanderer bergab.
Wenn die Steigung m steil ist, muss der Wanderer sehr mutig sein!
Fülle den nachfolgenden Lückentext aus und übertrage ihn in deine Mappe (Goodnotes):
Die Steigung m einer proportionalen (linearen) Funktion f(x) = mx bestimmt den Verlauf der Geraden:
Für m > 0 steigt die Gerade und für m < 0 fällt die Gerade.
Die Gerade steigt flach für 0 < m < 1 und steil für m > 1.
Die Gerade fällt flach für -1 < m < 0 und steil für m < -1.
Öffne die App GeoGebra und gib die Funktionsgleichung ein. Der zugehörige Graph wird sofort angezeigt. Steigt oder fällt dieser, steil oder flach?
Das Steigungsdreieck
Untersuche mithilfe der Animation in GeoGebra die Steigung von Geraden. Du kannst mit den Schiebereglern m verändern. Außerdem kannst du das Steigungsdreieck durch Verschieben der Punkte A und B verändern. Beobachte, was geschieht. Probiere aus.
Beobachtung: Die Steigung m einer linearen Funktion können wir mit einem Steigungsdreieck ermitteln und darstellen. Dazu zeichnen wir von einem beliebigen Punkt auf der Geraden ein Dreieck zu einem anderen Punkt auf der Geraden, bei dem die eine Seite parallel zur x-Achse liegt und die andere parallel zur y-Achse. Gehen wir dabei genau 1 Einheit in x-Richtung, steigt (oder fällt) der y-Wert immer um den Wert m, die Steigung.
Egal, wie das Steigungsdreieck gezeichnet wird, der Quotient aus bleibt immer gleich, dies ist die Steigung m.
Die Steigung m eines Graphen ablesen
Ist der Graph einer linearen Funktion gegeben (also eine Gerade im Koordinatensystem), kannst du die Steigung m mithilfe eines Steigungsdreiecks bestimmen.
Das nachfolgende Video erklärt, wie du bei einem gegebenen Graphen ein Steigungsdreieck einzeichnest und damit die Steigung m bestimmst.
1. Beispiel: m ist eine positive ganze Zahl (also eine natürliche Zahl):
2. Beispiel: m ist eine negative ganze Zahl:
3. Beispiel: m ist ein Bruch (positiv):
4. Beispiel: m ist ein Bruch (negativ):
Teste dein Wissen mit einem Kahoot (im Unterricht).
Der y-Achsenabschnitt b
Lineare Funktionen: f(x) = m·x + b
Nachdem wir uns ausführlich mit der Bedeutung von m, also der Steigung einer linearen Funktion beschäftigt haben, schau noch einmal im Applet, welche Bedeutung der Parameter b für den Graphen der Funktion hat.
Die Veränderung von b bewirkt eine Verschiebung der Geraden entlang der y-Achse.
Im Weiteren betrachten wir lineare Funktionen f(x) = mx + b.
Auch hier lernst du, wie du anhand eines Graphen die Funktionsgleichung bestimmst bzw. wie du zu einer Funktionsgleichung eine passende Gerade zeichnen kannst.
Von der Geraden zu Funktionsgleichung
Und nun noch einmal übersichtlich als in GeoGebra und als Bild:
Beispiel 1 (leicht): m ist eine natürliche Zahl
Originallink https://www.geogebra.org/m/a2ew5np7
Beispiel 2 (mittel): m ist eine negative Zahl
Originallink: https://www.geogebra.org/m/xc2p7wvk
Beispiel 3 (schwer): m ist ein Bruch
Originallink: https://www.geogebra.org/m/fnavjbgf