Gymnasium Marktbreit/Wissenschaftswoche 2024/11bMatheInfo: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Zeile 9: | Zeile 9: | ||
Eine Größ b nimmt absolut und konstant in einem zugehörigen Zeitabschnitt <math>A_{n}</math> zu oder ab. Die Differenzengleichung lautet: <math>A_{n+1}=A_{n}+b</math> | Eine Größ b nimmt absolut und konstant in einem zugehörigen Zeitabschnitt <math>A_{n}</math> zu oder ab. Die Differenzengleichung lautet: <math>A_{n+1}=A_{n}+b</math> | ||
Mit der Gleichung <math>A_{n}=A_{0}+n·b</math> wird die Rekursion | Mit der Gleichung <math>A_{n}=A_{0}+n·b</math> wird die Rekursion(Zu-/Abnahme einer Größe in einer bestimmten Zeit) explizit festgelegt. Im Unterricht wird statt dieser Formel oft die Formel y=m·x+t . | ||
Graphisch wird das lineare Wachstum durch eine gerade beschrieben. | |||
=== Exponentielles Wachstum === | === Exponentielles Wachstum === |
Version vom 2. Juli 2024, 07:53 Uhr
Wissenschaftswoche 2024 | ||
Forschungsfrage: Wie kann man mit Hilfe von Funktionen die Zukunft vorhersagen? | ||
Lineares Wachstum
Eine Größ b nimmt absolut und konstant in einem zugehörigen Zeitabschnitt zu oder ab. Die Differenzengleichung lautet:
Mit der Gleichung wird die Rekursion(Zu-/Abnahme einer Größe in einer bestimmten Zeit) explizit festgelegt. Im Unterricht wird statt dieser Formel oft die Formel y=m·x+t .
Graphisch wird das lineare Wachstum durch eine gerade beschrieben.
Exponentielles Wachstum
Bei biologischen Wachstumsprozessen ist die Zunahme einer Größe zu Beginn oft proportional zum derzeitigen Bestand
Beispiele: Bakterienwachstum, Wachstum durch Zellteilung, Bevölkerungswachstum
Rekursionsformel/Differenzialgleichung:
mit als Wachstumsfaktor und als Wachstumsrate, %
Lösung der Gleichung: