Benutzer:L.hodankov/lin Funktionen/y-Achsenabschnitt: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
Diese Seite des Lernpfades wurde teilweise übernommen von der Seite Herta-Lebenstein-Realschule https://projekte.zum.de/wiki/Herta-Lebenstein-Realschule/Lineare_Funktionen_im_Aktiv-Urlaub . Der Autor ist Buss-Haskert. Diese Seite wurde veröffentlicht unter der Lizenz CC BY SA.
Herzlichen Dank!
<br><br>
===Der y-Achsenabschnitt b===
===Der y-Achsenabschnitt b===
<br>
<br>
Zeile 6: Zeile 13:
Nachdem wir uns ausführlich mit der Bedeutung von '''m''', also der '''Steigung''' einer linearen Funktion beschäftigt haben, schau noch einmal im Applet, welche Bedeutung der Parameter '''b''' für den Graphen der Funktion hat.
Nachdem wir uns ausführlich mit der Bedeutung von '''m''', also der '''Steigung''' einer linearen Funktion beschäftigt haben, schau noch einmal im Applet, welche Bedeutung der Parameter '''b''' für den Graphen der Funktion hat.
<br>
<br>
<br>
Damit du einen Eindruck von der Bedeutung des Parameters b (y-Achsenabschnitt) der Funktionsgleichung linearer Funktionen <br>
Damit du einen Eindruck von der Bedeutung des Parameters b (y-Achsenabschnitt) der Funktionsgleichung linearer Funktionen <br>
f(x) = mx + b erhältst, verändere in der folgenden Animation mithilfe des Schiebereglers die Größe von b. Vergleiche deine Beobachtungen mit der Lösung unter der Graphik.
'''f(x) = mx + b''' erhältst, verändere in der folgenden Animation mithilfe des Schiebereglers die Größe von '''b'''.  
<br>
<br>
Vergleiche deine Beobachtungen mit der Lösung unter der Graphik.
<br>
<br>
<br><ggb_applet id="gdvednbk" width="700&quot;" height="500" /><br>
<br><ggb_applet id="gdvednbk" width="700&quot;" height="500" /><br>
Zeile 19: Zeile 32:




{{Box|Übung 10|Lies in der nachfolgenden App jeweils den y-Achsenabschnitt b am Graphen bzw. in der Funktionsgleichung ab.|Üben}}
{{Box|Übung |Lies in der nachfolgenden App jeweils den y-Achsenabschnitt b am Graphen bzw. in der Funktionsgleichung ab.|Üben}}


{{LearningApp|app=pfeqzdf8521|width=100%|height=600px}}
{{LearningApp|app=pfeqzdf8521|width=100%|height=600px}}

Aktuelle Version vom 25. August 2023, 09:53 Uhr

Diese Seite des Lernpfades wurde teilweise übernommen von der Seite Herta-Lebenstein-Realschule https://projekte.zum.de/wiki/Herta-Lebenstein-Realschule/Lineare_Funktionen_im_Aktiv-Urlaub . Der Autor ist Buss-Haskert. Diese Seite wurde veröffentlicht unter der Lizenz CC BY SA.

Herzlichen Dank!




Der y-Achsenabschnitt b


Lineare Funktionen: f(x) = m·x + b

Nachdem wir uns ausführlich mit der Bedeutung von m, also der Steigung einer linearen Funktion beschäftigt haben, schau noch einmal im Applet, welche Bedeutung der Parameter b für den Graphen der Funktion hat.


Damit du einen Eindruck von der Bedeutung des Parameters b (y-Achsenabschnitt) der Funktionsgleichung linearer Funktionen
f(x) = mx + b erhältst, verändere in der folgenden Animation mithilfe des Schiebereglers die Größe von b.

Vergleiche deine Beobachtungen mit der Lösung unter der Graphik.


GeoGebra


Die Veränderung von b bewirkt eine Verschiebung der Geraden entlang der y-Achse.

Der Graph schneidet die y-Achse im Punkt (0|b)


Merke: Der y-Achsenabschnitt b

Eine Funktion mit der Gleichung f(x) = m·x + b ist eine lineare Funktion.
Der Graph ist eine Gerade.
Diese Gerade hat die Steigung m und schneidet die y-Achse im Punkt (0|b).

b ist der y-Achsenabschnitt.


Übung
Lies in der nachfolgenden App jeweils den y-Achsenabschnitt b am Graphen bzw. in der Funktionsgleichung ab.




Im Weiteren betrachten wir lineare Funktionen f(x) = mx + b.
Auch hier lernst du, wie du anhand eines Graphen die Funktionsgleichung bestimmst bzw. wie du zu einer Funktionsgleichung eine passende Gerade zeichnen kannst.