Buss-Haskert/Quadratische Gleichungen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
(Tipp ergänzt)
Markierung: 2017-Quelltext-Bearbeitung
(doppelte Übung entfernt)
Markierung: 2017-Quelltext-Bearbeitung
 
(10 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
SEITE IM AUFBAU !!!{{Box|Lernpfad Quadratische Gleichungen|In diesem Lernpfad lernst du
SEITE IM AUFBAU !!!
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}
<br>
{{Box|Lernpfad Quadratische Gleichungen|In diesem Lernpfad lernst du
* was quadratische Gleichungen sind,
* was quadratische Gleichungen sind,
* wie du quadratische Gleichungen lösen kannst,
* wie du quadratische Gleichungen lösen kannst,
Zeile 227: Zeile 230:
Drehe zu einer deiner Lösungen ein Video, ähnlich wie das Video oben und lade es auf IServ in den Mathematik-Order eurer Klasse hoch.<br>Falls dir diese Aufgabe noch zu schwer ist, bearbeite zunächst die LearningApps unten und löse die Aufgaben danach.|Üben}}
Drehe zu einer deiner Lösungen ein Video, ähnlich wie das Video oben und lade es auf IServ in den Mathematik-Order eurer Klasse hoch.<br>Falls dir diese Aufgabe noch zu schwer ist, bearbeite zunächst die LearningApps unten und löse die Aufgaben danach.|Üben}}


Vorübungen zu Übung 7
Vorübung zu Übung 7
{{LearningApp|app=pcse2ekgt20|width=100%|height=600px}}
{{LearningApp|app=pcse2ekgt20|width=100%|height=600px}}
{{LearningApp|app=pcse2ekgt20|width=100%|height=600px}}




Zeile 353: Zeile 356:




{{Box|1=Anzahl der Lösungen quadratischer Gleichungen|2=Die Anzahl der Lösungen quadratischer Gleichungen hängt vom Radikand ab(vom Wert unter der Wurzel). Der Radikand <math>\left ( \frac{p}{2} \right )^2-q</math> wird '''Diskrimimante D''' genannt.<br>Die Anzahl der Lösungen ist abhängig von D.<br>
{{Box|1=Anzahl der Lösungen quadratischer Gleichungen|2=Die Anzahl der Lösungen quadratischer Gleichungen hängt vom Radikand ab(vom Wert unter der Wurzel). Der Radikand <math>\left ( \frac{p}{2} \right )^2-q</math> wird '''Diskriminante D''' genannt.<br>Die Anzahl der Lösungen ist abhängig von D.<br>
Die Gleichung hat <span style="color:red">zwei</span> Lösungen, <span style="color:green">eine</span> oder <span style="color:blue">keine</span> Lösung, wenn die Diskriminante D <span style="color:red">positiv</span>, <span style="color:green">null</span> oder <span style="color:blue">negativ</span> ist.|3=Arbeitsmethode}}
Die Gleichung hat <span style="color:red">zwei</span> Lösungen, <span style="color:green">eine</span> oder <span style="color:blue">keine</span> Lösung, wenn die Diskriminante D <span style="color:red">positiv</span>, <span style="color:green">null</span> oder <span style="color:blue">negativ</span> ist.|3=Arbeitsmethode}}


Zeile 386: Zeile 389:
x<sub>1/2</sub> = -6<math>\pm\sqrt{6^2-36}</math><br>
x<sub>1/2</sub> = -6<math>\pm\sqrt{6^2-36}</math><br>
x<sub>1/2</sub> = -6<math>\pm\sqrt{0}</math><br>
x<sub>1/2</sub> = -6<math>\pm\sqrt{0}</math><br>
x = -6 Eine Lösung, da die Diskriminate D = 0 ist.
x = -6 '''Eine''' Lösung, da die Diskriminate D = 0 ist.


b) (x + 3)² - 5 = 2(x - 5) + 3x² &nbsp; Klammern auflösen<br>
b) (x + 3)² - 5 = 2(x - 5) + 3x² &nbsp; Klammern auflösen<br>
x² + 6x + 9 - 5 = 2x - 10 + 3x² &nbsp; -2x; +10; -3x²<br>
x² + 6x + 9 - 5 = 2x - 10 + 3x² &nbsp; -2x; +10; -3x²<br>
-2x² + 4x + 14 = 0 &#124; :(-2)
-2x² + 4x + 14 = 0 &#124; :(-2)
x² - 2x - 7 = 0 &#124;pq-Formel...(D > 0, also 2 Lösungen)<br><br>
x² - 2x - 7 = 0 &#124;pq-Formel...(D > 0, also '''2 Lösungen''')<br><br>
c) (x-1)² + x² - 2 = (x - 2)(x + 2) &#124;Klammern auflösen (2. und 3. bin. Formel)<br>
c) (x-1)² + x² - 2 = (x - 2)(x + 2) &#124;Klammern auflösen (2. und 3. bin. Formel)<br>
x² - 2x + 1 + x² - 2 = x² - 4 &#124;-x²; +4<br>
x² - 2x + 1 + x² - 2 = x² - 4 &#124;-x²; +4<br>
x² - 2x + 5 = 0 &#124; pq-Formel ... (D<0, also keine Lösung)<br><br>
x² - 2x + 5 = 0 &#124; pq-Formel ... (D<0, also '''keine Lösung''')<br><br>
d) x(x + 3) + 12 = 12 - (2x + 1)² &#124;Klammern auflösen <br>
d) x(x + 3) + 12 = 12 - (2x + 1)² &#124;Klammern auflösen <br>
x² + 3x + 12 = 12 - (4x² + 4x + 1) &#124; Klammer auflösen<br>
x² + 3x + 12 = 12 - (4x² + 4x + 1) &#124; Klammer auflösen<br>
x² + 3x + 12 = 12 - 4x² - 4x - 1 &#124; -12; + 4x²; +4x; +1<br>
x² + 3x + 12 = 12 - 4x² - 4x - 1 &#124; -12; + 4x²; +4x; +1<br>
5x² + 7x + 1 = 0 &#124; :5<br>
5x² + 7x + 1 = 0 &#124; :5<br>
x² + 1,4x + 0,2 = 0 &#124; pq-Formel...(D > 0, also 2 Lösungen)
x² + 1,4x + 0,2 = 0 &#124; pq-Formel...(D > 0, also '''2 Lösungen''')
|2=Tipp zu Nr. 10|3=Verbergen}}
|2=Tipp zu Nr. 10|3=Verbergen}}


Zeile 450: Zeile 453:
Die neuen Tischplatte ist rechteckig mit der Länge (x+1) und der Breite (x-1)<br>
Die neuen Tischplatte ist rechteckig mit der Länge (x+1) und der Breite (x-1)<br>
Der Flächeninhalt der neuen Tischplatte berechnet sich mit A = (x+1)(x-1). Erinnerung: 3. binomische Formel.|2=Tipp zu Nr. 28|3=Verbergen}}
Der Flächeninhalt der neuen Tischplatte berechnet sich mit A = (x+1)(x-1). Erinnerung: 3. binomische Formel.|2=Tipp zu Nr. 28|3=Verbergen}}
<br>
<br>
{{Box|Übung 12: Vermischte Übungen|Wähle Aufgaben auf der Seite [https://mathe.aufgabenfuchs.de/gleichung/quadratischeGleichung.shtml '''Aufgabenfuchs''']  
{{Box|Übung 13: Vermischte Übungen|Wähle Aufgaben auf der Seite [https://mathe.aufgabenfuchs.de/gleichung/quadratischeGleichung.shtml '''Aufgabenfuchs''']  
* Nr. 39 und  
* Nr. 39 und  
* Nr. 40 .|Üben}}
* Nr. 40 .|Üben}}
<br>
{{Box|1=Aufgabe Kugelstoß|2=Beim Kugelstoß ließ sich die Bahn der Kugel durch folgende Gleichung beschreiben:<br>
f(x) = -0,081x² + 0,972x + 2,268<br>
Welche Weite erzielte der Stoß?|3=Üben}}
{{Lösung versteckt|1=Der Funktionsgraph der Gleichung ist eine nach unten geöffnete, gestauchte Parabel (wegen a=-0,081). <br>
Die Stoßweite entspricht der zweiten '''Nullstelle''' der Funktion. Setze also '''f(x) = 0''' und löse diese quadratische Gleichung.|2=Tipp 1|3=Verbergen}}
{{Lösung versteckt|1=-0,081x² + 0,972x + 2,268 = 0<br>
Dies ist eine quadratische Gleichung in der allgemeinen Form. Gehe schrittweise vor:<br>
Bringe die Gleichung in die Normalform x² + px + q = 0 und löse dann mit der pq-Formel.|2=Tipp 2|3=Verbergen}}
{{Lösung versteckt|1=-0,081x² + 0,972x + 2,268 = 0 &nbsp;&nbsp;&#124;:(-0,081) normieren<br>
x² -12x - 28 = 0 &nbsp;&nbsp;&#124;pq-Formel mit p=-12 und q=-28<br>
x<sub>1/2</sub> = -(-6)<math>\pm\sqrt{6^2-(-28)}</math><br>
x<sub>1/2</sub> = 6<math>\pm\sqrt{36+28}</math> &nbsp; <br>
x<sub>1/2</sub> = 6<math>\pm\sqrt{64}</math><br>
x<sub>1/2</sub> = 6<math>\pm</math>8<br>
x<sub>1</sub> = -2 (nicht sinnvoll); x<sub>2</sub> = 14<br>
Die Stoßweite beträgt 14m.|2=Lösung|3=Verbergen}}
<br>
===4) Checkliste===
'''1.''' Lies S. 31 ab der Mitte die Zusammenfassung! Bearbeite zunächst die Pflichtaufgaben (2. Spalte), vergleiche deine Lösungen mit den Lösungen hinten im Buch! Kreuze danach den für dich zutreffenden Smiley an. <br>'''2.''' Bearbeite dann die Übungsaufgaben der ausgeteilten Checkliste zu den Feldern, bei denen du &#128546; angekreuzt hast.<br>
Denke daran, deine Lösungen mit den Musterlösungen hinten im Buch zu vergleichen!
{| class="wikitable"
|+
! style="width:60%;" |Thema
! style="width:25%;" |Pflichtaufgaben
! style="width:5%;" |&#128512;
! style="width:5%;" |&#128529;
! style="width:5%;" |&#128546;
|-
!Rein quadratische Gleichungen
!
!
!
!
|-
|Du kannst rein quadratische Gleichungen lösen (Wurzelziehen).
|S. 32 Nr. 9, 10, 11
|
|
|
|-
|Du kannst angeben, wie viele Lösungen eine rein quadratische Gleichung hat und dies begründen.
|S. 32 Nr. 12<br>
S. 35 Nr. 22, 23
|
|
|
|-
!Gemischt quadratische Gleichungen
!
!
!
!
|-
|Du kannst gemischt quadratische Gleichungen lösen:
a) mithilfe der quadratischen Ergänzung
|S. 32 Nr. 14 (und Nr.13)
|
|
|
|-
|b) mithilfe der p/q-Formel (Lösungsformel)
|S. 39 Nr. 4 links und rechts
S. 39 Nr. 5 links und rechts
S. 32 Nr. 15, 17
|
|
|
|-
|Du kannst angeben, ob eine Gleichung zwei, eine oder keine Lösung hat.
|S. 32 Nr. 16
|
|
|
|-
!Anwendungsaufgaben
!
!
!
!
|-
|Mathematische Texte
|S. 39 Nr. 6 links
|
|
|
|-
|Geometrische Anwendungen
|S. 39 Nr. 6 rechts
|
|
|
|-
|Sachsituationen (Erinnerung: Quadratische Funktionen)
|S. 39 Nr. 7 rechts
Aufgabe Kugelstoß (s.oben)
|
|
|
|-
|}

Aktuelle Version vom 14. August 2023, 18:15 Uhr

SEITE IM AUFBAU !!!


Lernpfad Quadratische Gleichungen

In diesem Lernpfad lernst du

  • was quadratische Gleichungen sind,
  • wie du quadratische Gleichungen lösen kannst,
  • wie du Anwendungsaufgaben mithilfe von quadratischen Gleichungen löst.
Bearbeite die Schritte des Lernpfades selbständig. Stelle Fragen, wo du unsicher bist. Achte auf die Zeit!!


Anhalteweg.png

In der Fahrschule lernst du eine Faustformel für die Berechnung des Bremsweges:

Bremsweg in m:   sB = (

Hier handelt es sich um eine quadratische Gleichung, da die Variable v quadriert wird (v²).


Berechne den Bremsweg, wenn das Auto mit einer Geschwindigkeit von 30km/h fährt, also v=30 und wenn es mit einer Geschwindigkeit von 50km/h unterwegs ist.

Was fällt dir auf?
Vor Schulen oder Kindergärten sollten die Bremswege möglichst kurz sein. Wie schnell darf ein Auto fahren, damit der Bremsweg höchstens 4m beträgt?

Du siehst: Mathe ist überall! Du erarbeitest nun die Grundlagen zum Lösen solcher quadratischer Gleichungen.

1) Was sind quadratische Gleichungen?

Quadratische Gleichungen sind Gleichungen, in denen die Variable in zweiter Potenz (also z.B. x²) vorkommt.

Erinnerung: Lineare Gleichungen sind Gleichungen, in denen die Variable nur in erster Potenz (also z.B. x = x1) vorkommt.

Entscheide in der nachfolgenden LearningApp, ob es sich um eine quadratische Gleichung handelt oder nicht.


2) Wie löse ich quadratische Gleichungen?

Quadratische Gleichungen kannst du zeichnerisch und rechnerisch lösen. Nutze für die zeichnerische Lösung GeoGebra und prüfe so immer deine rechnerischen Lösungen. Es gibt verschiedene Formen quadratischer Gleichungen. Die Lösungsstrategie hängt von der Form ab. Dies erklären die folgenden Kapitel.

2.1) Rein quadratische Gleichungen lösen

In der obigen Faustformel kommt die Variable v nur in quadratischer Form vor, also nur als v². Solche Gleichungen heißen "rein quadratisch". Sie haben immer die Form ax² = d (hier umgeformt v² = sB)


Rein quadratische Gleichungen

Eine quadratische Gleichung heißt rein quadratisch, wenn die Variable ausschließlich in der zweiten Potenz vorkommt:

    ax² = c

Diese Gleichungen zu lösen hast du schon in der 9. Klasse gelernt. Wiederhole dein Wissen mithilfe der nachfolgenden Aufgaben.


Übung 1

Löse Buch

  • S. 32 Nr. 10
  • S. 35 Nr. 18
  • S. 35 Nr. 19
  • S. 35 Nr. 20


Übung 2
Löse die nachfolgende App.


Was ist die bei der letzten Aufgabe aufgefallen?

In den obigen Aufgaben erkennst du, dass eine rein quadratische Gleichung mehrere Lösungen haben kann:
zwei Lösungen, eine Lösung oder keine Lösung. Wovon hängt die Anzahl der Lösungen ab? Erkläre und begründe mithilfe der nachfolgenden Beispiele:

Zwei Lösungen:

1. x² = 169  |

...
Eine Lösung:

2. 2x² + 10 = 10  |

...
Keine Lösung:

3. -3x² = 108  |

...


Anzahl der Lösungen quadratischer Gleichungen

Die Anzahl der Lösungen quadratischer Gleichungen hängt vom Radikand ab(vom Wert unter der Wurzel):

Die Gleichung hat zwei Lösungen, eine oder keine Lösung, wenn der Radikand positiv, null oder negativ ist.

Idee Flipchart.pngDu kannst diese Gleichungen auch grafisch lösen:
Beispiel:
1. x² = 169 kannst du auch schreiben als x² - 169 = 0. Du berechnest also die Nullstellen der Funktion f(x) = x² - 169.

Übertrage die Zeichnung in dein Heft und erkläre die grafische Lösung.

Wie hilft dir das nachfolgende Applet bei der Lösung der Gleichung 0,5x² = 4,5 ? Erkläre im Heft!


Übung 3

Löse Buch

  • S. 35 Nr. 22
  • S. 35 Nr. 23
  • S. 35 Nr. 24 a, b
Nutze zur Lösung bzw. zur Kontrolle die obigen Applets von GeoGebra.


Übung 4
Löse die Gleichungen ① x² - 2 = 0 und ② -2x² + 2 = 0 zeichnerisch. Es gibt mehrere Möglichkeiten. Vergleiche deine Lösungen mit denen deines Partners.


2.2) Gemischt quadratische Gleichungen lösen

Eine Gleichung heißt "gemischt quadratisch", wenn die Variable in der zweiten Potenz (z.B. x²) und in einfacher Potenz (z.B. x) vorkommt.

2.2.1) Lösen durch Ausklammern: Gleichungen der Form x² + bx = 0

Eine Gleichung heißt "gemischt quadratisch", wenn die Variable in der zweiten Potenz (z.B. x²) und in einfacher Potenz (z.B. x) vorkommt.
Beginnen wir mit dem besonderen Fall, dass die Gleichung die Form x² + bx = 0 hat, es also keinen Term "ohne" Variable gibt und eine Seite den Wert 0 hat.

Gemischt quadratische Gleichungen lösen durch Ausklammern

Hat die Gleichung die Form x² + bx = 0, so kannst du x ausklammern:
x² + bx = 0
x(x + b) = 0   Dieses Produkt wird nur 0, wenn einer der beiden Faktoren 0 ist (Satz vom Nullprodukt), also
x = 0 oder x + b = 0 |-b

x1 = 0 oder x2 = -b.


Übung 5
Löse die nachfolgende App, indem du zunächst die Gleichung durch Ausklammern in die Produktform umwandelst.


Übung 6

Löse Buch

  • S. 28 Nr. 14
  • S. 28 Nr. 15

2.2.2) Lösen durch quadratische Ergänzung: Gleichungen der Form x² + bx + c = 0

Idee Flipchart.pngKannst du die folgenden Gleichungen lösen? Probiere aus und vergleiche deine Ideen mit denen deines Partners.
1. (x + 3)² = 0

2. x² + 6x + 9 = 0

3. x² -10x + 25 = 0

4. x² +8x + 7 = 0


Kommt in der Gleichung neben x² und x auch noch ein Term ohne x vor, löst du die Gleichung mithilfe der quadratischen Ergänzung.


Gemischt quadratische Gleichungen lösen durch quadratische Ergänzung

Hat die Gleichung die Form x² + bx + c = 0, löst du die Gleichung mithilfe der quadratischen Ergänzung:

Stelle die Gleichung um: x² + bx = -c.
Mithilfe der quadratischen Ergänzung auf beiden Seiten der Gleichung, wird dann der Term x² + bx zu einem Binom umgeformt. Dann wird auf beiden Seiten der Gleichung die Wurzel gezogen.

Schau das Video zur Beispielaufgabe an. Schreibe das Beispiel in dein Heft und mache dir Notizen zu jedem Schritt der Lösung.


Übung 7

Nun bist du an der Reihe. Löse mit der quadratischen Ergänzung

  • S. 27 Nr. 3 .
Drehe zu einer deiner Lösungen ein Video, ähnlich wie das Video oben und lade es auf IServ in den Mathematik-Order eurer Klasse hoch.
Falls dir diese Aufgabe noch zu schwer ist, bearbeite zunächst die LearningApps unten und löse die Aufgaben danach.

Vorübung zu Übung 7



Übung 8

Löse mit quadratischer Ergänzung Buch

  • S. 27 Nr. 2
  • S. 27 Nr. 4
  • S. 27 Nr. 5



2.2.3) Lösen mit der Lösungsformel: p-q-Formel

Mit der quadratischen Ergänzung kannst du gemischt quadratische Gleichungen lösen. Eine weitere Möglichkeit ist die Anwendung der Lösungsformel: Die p-q-Formel.

Damit diese Formel angewendet werden darf, muss die gemischt quadratische Gleichung in der sogenannten Normalform gegeben sein:
x² + px + q = 0

Diese Formel wird hergeleitet mithilfe der quadratischen Ergänzung. Wir leiten die Formel parallel zu einer Beispielaufgabe oben her:
Herleitung der p-q-Formel.png


Lösen mit der Lösungsformel: p-q-Formel

Jede quadratische Gleichung lässt sich mit der p-q-Formel lösen. Dazu muss die Gleichung zunächst in die Normalform x² + px + q = 0 umgeformt werden. Dann werden die Werte für p und q bestimmt und in die Formel eingesetzt:
x1/2 = -

Achte dabei auf die Vorzeichen von p und q.


Präge dir die Lösungsformel ein mit dem Lied von Dorfuchs. Höre es so oft, bis es ein Ohrwurm wird:


Übe zunächst das Umstellen der Gleichung ein die Normalform und die Bestimmung von p und q.


Löse die nächsten Aufgaben mit der Lösungsformel. Schreibe wie im Beispiel:

x² - 22x + 72 = 0  |Setze ein: p=-22; =-11; -=11; q=72
x1/2 = 11
x1/2 = 11
x1/2 = 11
x1/2 = 117
x1 = 18; x2 = 4

Kurzschreibweise:
x² - 22x + 72 = 0  |Setze ein: p=-22; =-11; -=11; q=72
x1/2 = 11
x1/2 = 117
x1 = 18; x2 = 4




Übung 9

Löse mit der p-q-Formel Buch

  • S. 30 Nr. 1
  • S. 30 Nr. 2
  • S. 32 Nr. 15

Prüfe deine Lösungen mithilfe des GeoGebra-Applets. Erinnerung: Die Lösungen der Gleichung sind die Nullstellen der zugehörigen Funktion.




2.3) Allgemein quadratische Gleichungen lösen

Allgemein quadratische Gleichungen sind Gleichungen in der Form ax² + bx + c = 0.
Im Unterschied zur Normalform ist hier der Koeffizient von x² eine beliebige Zahl a.

Ordne in der nachfolgenden LearningApp, ob es sich um die Normalform oder die allgemeine Form quadratischer Gleichungen handelt.


Jede quadratische Gleichung lässt sich in die Normalform x² + px + q = 0 umformen. Dann können wir wieder die p-q-Formel zur Lösung anwenden.


Allgemein quadratische Gleichungen lösen

Allgemein quadratische Gleichungen sind Gleichungen in der Form ax² + bx + c = 0.
Alle quadratischen Gleichungen lassen sich umformen in die Normalform x² + px + q = 0. Dann kann wieder die p-q-Formel zur Lösung angewendet werden.
1. Schritt: Forme in die Normalform x² + px + q = 0 um.

2. Schritt: Wende die p-q-Formel x1/2 = - an.

Übe zunächst das Umwandeln in die Normalform:


Ein Video zur Zusammenfassung:


Übung 9

Löse Buch

  • S. 30 Nr. 3
  • S. 30 Nr. 4
Wandle die Gleichungen zunächst in die Normalform um und wende dann die p-q-Formel an.


Prüfe deine Lösungen mithilfe des GeoGebra-Applets. Erinnerung: Die Lösungen der Gleichung sind die Nullstellen der zugehörigen Funktion.


Anzahl der Lösungen quadratischer Gleichungen

Die Anzahl der Lösungen quadratischer Gleichungen hängt vom Radikand ab(vom Wert unter der Wurzel). Der Radikand wird Diskriminante D genannt.
Die Anzahl der Lösungen ist abhängig von D.

Die Gleichung hat zwei Lösungen, eine oder keine Lösung, wenn die Diskriminante D positiv, null oder negativ ist.

Beispiele:

D > 0, zwei Lösungen:

1. x² + 6x + 5 = 0  |
x1/2 = -3
x1/2 = -3  D = 4 (positiv)
x1/2 = -32   x1 = -1 ; x2 = -5

D = 0,eine Lösung:

2. x² + 6x + 9 = 0  |
x1/2 = -3
x1/2 = -3  D = 0
x1/2 = -30

D < 0,keine Lösung:

3. x² + 6x + 10 = 0  |
x1/2 = -3
x1/2 = -3  D < 0 (negativ)

ist nicht lösbar, da das Quadrat einer Zahl niemals negativ ist, also die Wurzel nie aus einer negativen Zahl gezogen werden kann.



Übung 10

Löse Buch

  • S. 30 Nr. 10


Übung 11: Vermischte Übungen
Wähle Aufgaben auf der Seite Aufgabenfuchs Nr. 1 - 19 .

3) Anwendungsaufgaben

Anwendungsaufgaben lassen sich schrittweise lösen mithilfe eines Modells. Dabei wird die reale Situation (Sachsituation) in ein vereinfachtes mathematisches Modell übersetzt. Nun können wir diese Rechnung lösen. Die mathematische Lösung wird dann auf die Realität bezogen und die Ergebnisse werden zur Bewertung der Situation genutzt.

Der nachfolgende Kreislauf veranschaulicht dies:

Datei:Modellieren.png

Häufig geht es in Anwendungsaufgaben mathematisch darum, die Nullstellen von Parabeln zu bestimmen. Dazu nutzt du dein Wissen zum Lösen quadratischer Gleichungen.


Um Aufgaben zu geometrischen Anwendungen zu lösen, helfen dir die nachfolgenden Schritte:
1. Gib die Bedeutung der Variablen an. Bei geometrischen Anwendungen zeichne eine Skizze und beschrifte sie vollständig.
2. Stelle Terme zu den Angaben im Text auf.
3. Stelle eine Gleichung auf.
4. Löse die Gleichung
5. Probe
6. Antwort


Übung 12

Löse Buch

  • S. 35 Nr. 26
  • S. 35 Nr. 27
  • S. 35 Nr. 28


Übung 13: Vermischte Übungen

Wähle Aufgaben auf der Seite Aufgabenfuchs

  • Nr. 39 und
  • Nr. 40 .


Aufgabe Kugelstoß

Beim Kugelstoß ließ sich die Bahn der Kugel durch folgende Gleichung beschreiben:
f(x) = -0,081x² + 0,972x + 2,268

Welche Weite erzielte der Stoß?


4) Checkliste

1. Lies S. 31 ab der Mitte die Zusammenfassung! Bearbeite zunächst die Pflichtaufgaben (2. Spalte), vergleiche deine Lösungen mit den Lösungen hinten im Buch! Kreuze danach den für dich zutreffenden Smiley an.
2. Bearbeite dann die Übungsaufgaben der ausgeteilten Checkliste zu den Feldern, bei denen du 😢 angekreuzt hast.

Denke daran, deine Lösungen mit den Musterlösungen hinten im Buch zu vergleichen!

Thema Pflichtaufgaben 😀 😑 😢
Rein quadratische Gleichungen
Du kannst rein quadratische Gleichungen lösen (Wurzelziehen). S. 32 Nr. 9, 10, 11
Du kannst angeben, wie viele Lösungen eine rein quadratische Gleichung hat und dies begründen. S. 32 Nr. 12

S. 35 Nr. 22, 23

Gemischt quadratische Gleichungen
Du kannst gemischt quadratische Gleichungen lösen:

a) mithilfe der quadratischen Ergänzung

S. 32 Nr. 14 (und Nr.13)
b) mithilfe der p/q-Formel (Lösungsformel) S. 39 Nr. 4 links und rechts

S. 39 Nr. 5 links und rechts S. 32 Nr. 15, 17

Du kannst angeben, ob eine Gleichung zwei, eine oder keine Lösung hat. S. 32 Nr. 16
Anwendungsaufgaben
Mathematische Texte S. 39 Nr. 6 links
Geometrische Anwendungen S. 39 Nr. 6 rechts
Sachsituationen (Erinnerung: Quadratische Funktionen) S. 39 Nr. 7 rechts

Aufgabe Kugelstoß (s.oben)