Quadratische Gleichungen lösen. Auch für die Lösung quadratischer Gleichungen hast du Verfahren kennengelernt. Die Aufgaben helfen dir dabei, diese zu wiederholen.
{{Box|Idee| Auch für die Lösung quadratischer Gleichungen hast du Verfahren kennengelernt. Die Aufgaben helfen dir dabei, diese zu wiederholen.
|Unterrichtsidee }}
{{Box|1 = Einfache quadratische Gleichungen|2=
{{Box|1 = Einfache quadratische Gleichungen|2=
Version vom 21. März 2023, 07:33 Uhr
Willkommen auf dem Lernpfad: Nützliche Werkzeuge - Terme und Gleichungen.
In diesem Lernpfad geht es um das Vertiefen deines Wissens über Terme, Variablen und Gleichungen.
Du findest hier eine Wiederholung zu den Begriffen und Übungsaufgaben zu den Themen Terme aufstellen, Terme umformen und Gleichungen lösen. .
Ergänze den Lückentext. Prüfe das Ergebnis und übertrage die Lösung in den Kasten zur Aufgabe in deinem Begleitmaterial.
Variablen sind (meistens kleine Buchstaben). Sie sind . Du kannst für sie einsetzen. Terme sind . Terme können Zahlen, Rechenzeichen, Klammern und enthalten. Werden zwei mit einem Gleichheitszeichen verbunden, entsteht eine . Es gibt verschiedene Arten von Gleichungen. Wichtige Arten sind die und die Gleichungen.
Du hast gelernt, Sachsituationen mit Hilfe von Termen zu beschreiben. Hier kannst du dein Wissen testen.
a)
b)
Terme vereinfachen
Info
Terme enthalten unterschiedliche Rechenoperationen wie Addition, Subtraktion, Multiplikation und Division. Manche Teile von Termen kann man zusammenfassen, um so den Term zu vereinfachen. Du hast die Regeln im Unterricht bereits kennengelernt.
Erinnerung: Überflüssige Malpunkte
Um Produktterme so einfach wie möglich zu schreiben, dürfen überflüssige Malpunkte weggelassen werden. Dies sind Malpunkte zwischen einer Zahl und einer Variablen und zwischen einer Zahl oder Variablen und einer Klammer.Markiere die überflüssigen Malpunkte in den Termen.
Info
Überflüssige Malpunkte werden nicht notiert.
Terme zusammenfassen
Vereinfache die Terme soweit wie möglich. Übertrage die Ergebnisse in den Kasten zur Aufgabe in deinem Begleitmateria. Wenn du dir unsicher bist, schaue dir die Tipps an. Zusammenfassen von Summen:
a)
b)
c)
d)
e)
f)
Zwei Summen (oder Differenzen) werden miteinander multipliziert, indem man jeden Summanden der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert:
Ergänze den Lückentext. Prüfe das Ergebnis und übertrage die Lösung in den Kasten "Klammern in Termen" in deinem Begleitheft.
Das Ausmultiplizieren hat zum Ziel, eine . Man multipliziert einen mit einer Klammer, indem man den Faktor mit jedem einzelnen Glied in der Klammer . .
Diese Regel nennt man . Es spielt keine Rolle, ob der Faktor links oder rechts von der Klammer steht:
Steht ein vor der Klammer, sich die Vorzeichen beim Auflösen der Klammer herum:
- a(b - c) = ab ac
Zwei Summen (oder Differenzen) werden miteinander multipliziert, indem man der ersten Klammer mit der zweiten Klammer
.
In dieser Aufgabe kannst du das Ausmultiplizieren üben. Ordne jedem Klammerterm die richtige ausmultiplizierte Lösung zu. Nimm dir einen Zettel für Nebenrechnungen zur Hilfe. Trage die richtige Lösung in di
a)
b)
c)
d)
d)
f)
Ausklammern
Beim Ausklammern wird eine Summe in ein Produkt umgewandelt, es werden also Klammern hinzugefügt.
Dies ist nur dann möglich, wenn die Summanden gemeinsame Faktoren haben.
Ausklammern
Suche in den LearningApps nach gemeinsamen Faktoren der Summenden und klammere diese dann aus.
Wenn du dir unsicher bist, schaue dir zuerst das Beispiel an.
Übertrage die Ergebnisse nach der Kontrolle in den Kasten zur Aufgabe in deinem Begleitheft.
Lineare und quadratische Gleichungen. Eine lineare Gleichung ist eine Gleichung 1. Grades. Das heißt: Die Variable x hat als Exponenten höchstens die Zahl 1:
.
Ihre einfachste Form ist: , wobei und reelle Zahlen sind
und eine Variable.
Eine quadratische Gleichung ist eine Gleichung 2. Grades. Das heißt: Die Variable x hat als Exponenten höchstens die Zahl 2. Zum Beispiel: oder . Die Verfahren zur Lösung solcher Gleichungen sollst du jetzt wiederholen.
Verfahren zum Lösen linearer Gleichungen
Das Verfahren zum Lösen linearer Gleichungen hast du bereits kennengelernt. Die folgende Learning-App hilft dir, dich zu erinnern.
Merke
Vorgehensweise zum Lösen von Gleichungen mit Klammern
Bringe die Schritte in die richtige Reihenfolge, übertrage diese dann in den Kasten zur Aufgabe in deinem Begleitheft.
Löse die Klammern auf.Dividiere durch den Faktor vor der Variable.Bringe die Summanden mit Variablen und die Summanden ohne Variablen jeweils auf eine Seite, fasse sie zusammen bzw. ordne sie.Fasse die Terme auf beiden Seiten zusammen.
Beispiel:
Training: lineare Gleichungen lösen
Löse die Gleichungen. Führe, wenn möglich, eine Probe durch. Denke daran: Eine Probe kann nur durchgeführt werden, wenn es mindestens eine Lösung für die Gleichung gibt. Trage die Ergebnisse in die Box zur Aufgabe in deinem Begleitmaterial ein.
zu a): Bei Gleichungen der Form , also ohne linearen Summanden kannst du die Gleichung umstellen, sodass alleine steht und anschließend die Wurzel ziehen.
Zeichne die Rechtecke, die durch die einzelnen Term-Glieder repräsentiert werden, in dein Heft und überprüfe, ob sich daraus die Figur zusammen setzen lässt.
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.