Informatik am Gymnasium Trittau/Digitale Informationsverarbeitung/Volladdierer: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 15: Zeile 15:


[[Datei:Volladdierer .png|mini|600x600px|alternativtext=|zentriert]]
[[Datei:Volladdierer .png|mini|600x600px|alternativtext=|zentriert]]


Ein Volladdierer mit A, B und C Eingängen, sowie 2^0 und 2^1 Ausgängen.
Ein Volladdierer mit A, B und C Eingängen, sowie 2^0 und 2^1 Ausgängen.
Zeile 22: Zeile 21:


=====Schaltung für 2^1=====
=====Schaltung für 2^1=====


[[Datei:Schaltung für 2^1.png|mini|595x595px|alternativtext=|zentriert]]
[[Datei:Schaltung für 2^1.png|mini|595x595px|alternativtext=|zentriert]]
Zeile 33: Zeile 31:


=====Schaltung für 2^0=====
=====Schaltung für 2^0=====
[[Datei:Schaltung für 2^0.png|mini|598x598px|alternativtext=|zentriert]]
[[Datei:Schaltung für 2^0.png|mini|598x598px|alternativtext=|zentriert]]


Zeile 44: Zeile 40:


=====Schaltung für 2^0 und 2^1=====
=====Schaltung für 2^0 und 2^1=====


[[Datei:Schaltung für 2^0 und 2^1.png|mini|600x600px|alternativtext=|zentriert]]  
[[Datei:Schaltung für 2^0 und 2^1.png|mini|600x600px|alternativtext=|zentriert]]  

Version vom 14. Dezember 2022, 07:29 Uhr

Allgemeine Informationen

Mit Hilfe eines Volladdierers können drei einstellige Binärzahlen addiert werden.

Benötigt werden dafür drei Eingänge und zwei Ausgänge, da im Binärsystem eine 3 (größtmögliche Zahl bei drei Eingängen) einer 1 1 entspricht.

Beispielsweise kann man so einen Volladdierer mit dem Programm Digital erstellen.


Funktionsweise

Aufbau

Ein Volladdierer mit A, B und C Eingängen, sowie 2^0 und 2^1 Ausgängen.


Schaltung für 2^1


Die 2^1 steht für die Binärzahl 1 0. Wenn nun zwei beliebeige Eingänge ein Signal geben, wird eine der oberen UND-Schaltungen aktiviert und ein Ausgangssignal an die obere ODER-Schaltung weitergeleitet. Die ODER-Schaltung aktiviert dann den entsprechenden Ausgang. Die 2^0 wird nicht aktiviert, da entweder die untere UND-Schaltung durch alle Signale aktiviert werden muss, oder eine der UND-Schaltungen in Verbindung mit den jeweils zwei NICHT-Schaltungen davor aktiviert sein muss.


Schaltung für 2^0


Die 2^0 steht für die Binärzahl 0 1. Wenn nun ein beliebiger Eingang ein Signal gibt, wird eine der UND-Schaltungen in Verbindung mit den jeweils zwei NICHT-Schaltungen aktiviert und ein Signal wird an die untere ODER-Schaltung weitergegeben. Die ODER-Schaltung aktiviert dann den entsprechenden Ausgang. Die 2^1 wird nicht aktiviert, da mindestens zwei Eingänge ein Signal an die oberen UND-Schaltungen liefern müssen, damit diese aktiviert werden.


Schaltung für 2^0 und 2^1


Die 2^0 und 2^1 stehen für die Binärzahl 1 1. Wenn nun alle drei Eingänge ein Signal geben, werden sowohl alle oberen UND-Schaltungen, als auch die eine untere UND-Schaltung aktiviert. Dadurch werden beide Ausgänge aktiviert.