Benutzer:Niklas WWU-11/Testseite: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(128 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
{{Box | |||
|Aufgabe 2: Sightseeing in Paris 1 - Der Louvre | |||
|[[Datei:Grundlagen-bearbeiten.png|30px|middle]] Nutze für diese Aufgabe das Arbeitsblatt „Pyramiden verknüpfen“. | |||
[[Datei:Parigi - Pyramide du Louvre - panoramio.jpg|mini|Glaspyramide im Innenhof des Louvre.]] | |||
Die | Du machst mit deiner Familie Urlaub in Paris und besichtigst einige Sehenswürdigkeiten. Zuerst nehmt ihr an einer Führung durch das berühmte Museum ''Louvre'' teil. Das nebenstehende Bild zeigt die im Innenhof des Louvre stehende Glaspyramide mit quadratischer Grundfläche. | ||
Während eurer Führung durch das Museum stellt eine Touristin folgende Frage: „Wie lang sind die Edelstahlträger an den Seitenkanten der Pyramide?" Der Touristenführer weiß nur, dass die Pyramide 21 Meter hoch ist. | |||
'''a)''' Beurteile, ob diese Angabe genügt, um die Länge eines Stahlträgers zu berechnen. Falls dem nicht so ist, gib Größen an, die zusätzlich benötigt werden. | |||
'''b)''' Ein anderer Tourist findet im Internet eine Angabe zur Seitenlänge der quadratischen Grundfläche von 35 Metern. Berechne mithilfe der gegeben Größen die Länge eines Stahlträgers an der Seitenkante der Pyramide. | |||
{{Lösung versteckt|1=Zeichne zur Veranschaulichung eine passende Pyramide auf dein Arbeitsblatt.|2=Tipp 1 zu b) anzeigen|3=Tipp 1 zu b) verbergen}} | |||
{{Lösung versteckt|1=Du kannst zur Berechnung der gesuchten Seite den Satz des Pythagoras beliebig oft anwenden.|2=Tipp 2 zu b) anzeigen|3=Tipp 2 zu b) verbergen}} | |||
{{Lösung versteckt|1=Überlege dir Hilfsdreiecke innerhalb der Pyramide, in denen du den Satz des Pythagoras anwenden kannst.|2= Tipp 3 zu b) anzeigen|3=Tipp 3 zu b) verbergen}} | |||
<ggb_applet id="kqmcb8yu" width="2560" height="1377" border="888888" sdz="false" /> | |||
{{Lösung versteckt|1=Im nachstehenden GeoGebra-Applet kannst du dir durch das Anklicken der einzelnen Boxen mögliche Hilfsdreiecke anzeigen lassen. | |||
<div style="width:calc(100%-1rem);height:0;padding-bottom:50%;"><ggb_applet id="w8rxa9cj" width="500" height="300" /></div>|2=Tipp 4 zu b) anzeigen|3=Tipp 4 zu b) verbergen}} | |||
{{Lösung versteckt|1= Gegeben sind die Höhe der Pyramide mit <math>h=21~\mathrm{m}</math> und die Seitenlänge der Grundfläche mit <math>a=35~\mathrm{m}</math>. <br> | |||
Du kannst verschiedene Kombinationen an Hilfsdreiecken nutzen, um die Länge eines Stahlträgers zu bestimmen. <br> | |||
Im Folgenden zeigen wir eine dieser Möglichkeiten. | |||
Zunächst berechnen wir Diagonalenlänge <math>d_a</math> der Pyramidengrundfläche mit Hilfe des Satzes des Pythagoras: | |||
<math> | |||
\begin{align} | |||
& & (35~\mathrm{m})^2+ (35~\mathrm{m})^2 &=d_a^2 & &\mid \text{Termumformung}\\ | |||
\Leftrightarrow & & 2450~\mathrm{m}^2 &=d_a^2 & &\mid \sqrt{} \\ | |||
\Leftrightarrow & & \sqrt{2450~\mathrm{m}^2} &=d_a & &\mid \text{Termumformung}\\ | |||
\Leftrightarrow & & 49{,}50~\mathrm{m} &\approx d_a & & | |||
\end{align} | |||
</math> | |||
Nun betrachten wir das Dreieck bestehend aus der Seite <math>\frac{d_a}{2}</math>, der Höhe <math>h=21~\mathrm{m}</math> der Pyramide und der Seitenkante <math>s</math>. Mithilfe des Satzes des Pythagoras lässt sich <math>s</math> berechnen: | |||
<math> | |||
\begin{align} | |||
& & \left(\frac{d_a}{2}\right)^2+ h^2 &=s^2 & &\mid \sqrt{}\\ | |||
\Leftrightarrow & & \sqrt{\left(\frac{d_a}{2}\right)^2+ h^2} &=s & &\mid \text{Werte einsetzen} \\ | |||
\Leftrightarrow & & \sqrt{\left(\frac{49{,}50~\text{m}}{2}\right)^2+ (21~\text{m})^2} &=s & &\mid \text{Termumformung}\\ | |||
\Leftrightarrow & & 32{,}46~\mathrm{m} &\approx s & & | |||
\end{align} | |||
</math> | |||
Die Länge eines Stahlträgers der Pyramide beträgt demnach etwa <math>32{,}46~\mathrm{m}^2 </math>.|2=Lösung zu b) anzeigen|3=Lösung zu b) verbergen}} | |||
'''c)''' Ebenfalls kam die Frage auf, wie viele Quadratmeter Glasfläche die Reinigungsfirma von außen putzen muss. Beantworte die Frage durch mathematische Rechnungen. | |||
{{Lösung versteckt|1=Die Größe der Glasfläche entspricht der Mantelfläche der Pyramide.|2=Tipp 1 zu c) anzeigen|3=Tipp 1 zu c) verbergen}} | |||
{{Lösung versteckt|1=Verwende die berechnete Länge eines Stahlträgers aus Aufgabenteil b) und bestimme damit in einem geeigneten Hilfsdreieck die Seitenhöhe der Pyramide.|2=Tipp 2 zu c) anzeigen|3=Tipp 2 zu c) verbergen}} | |||
{{Lösung versteckt|1=Im nachstehenden GeoGebra-Applet kannst du dir durch das Anklicken der einzelnen Boxen verschiedene Hilfsdreiecke in der Pyramide anzeigen lassen. Suche das geeignete Hilfsdreieck, um die Seitenhöhe zu berechnen. | |||
<div style="width:calc(100%-1rem);height:0;padding-bottom:57%;"><ggb_applet id="jv72smtn" width="700" height="400" /></div>|2=Tipp 3 zu c) anzeigen|3=Tipp 3 zu c) verbergen}} | |||
{{Lösung versteckt|1= | |||
Es wird der Satz des Pythagroas auf das Dreieck, welches aus einer Seitenkante <math> s \approx 32{,}46~\mathrm{m}</math> der Pyramide , der Höhe der Pyramidenseite <math> h_a </math> und der Hälfte der Seitenlänge der Grundfläche <math> \frac{a}{2} = \frac{35~\mathrm{m}}{2} </math> besteht, angewendet. <br> | |||
Damit folgt für die Höhe der Pyramidenseite <math> h_a </math>: | |||
<math> | |||
\begin{align} | |||
& & h_a^2+ \left(\frac{35~\mathrm{m}}{2}\right)^2 &= s^2 & & \mid -\left(\frac{35~\mathrm{m}}{2}\right)^2 \\ | |||
\Leftrightarrow & & h_a^2 &= s - \left(\frac{35~\mathrm{m}}{2}\right)^2 & &\mid \sqrt{} \\ | |||
\Leftrightarrow & & h_a &= \sqrt{ s^2 - \left(\frac{35~\mathrm{m}}{2}\right)^2} & & \mid \text{Werte einsetzen} \\ | |||
\Leftrightarrow & & h_a &\approx \sqrt{ (32{,}46~\mathrm{m})^2 - (17{,}5~\mathrm{m})^2} & & \mid \text{Termumformung}\\ | |||
\Leftrightarrow & & h_a &\approx 27{,}34~\mathrm{m} & & | |||
\end{align} | |||
</math> | |||
Die Fläche einer Glaswand <math> A_\text{Seitenfläche} </math> wird wie folgt berechnet: | |||
<math> | |||
\begin{align} | |||
& & A_\text{Seitenfläche} &= h_a \cdot \frac{35~\mathrm{m}}{2} & & \mid \text{Werte einsetzen} \\ | |||
\Leftrightarrow & & A_\text{Seitenfläche} &\approx 27{,}34~\mathrm{m} \cdot 17{,}5~\mathrm{m} & &\mid \text{Termumformung} \\ | |||
\Leftrightarrow & & A_\text{Seitenfläche} &\approx 478{,}45~\mathrm{m}^2 & & | |||
\end{align} | |||
</math> | |||
Die gesamte Glasfläche der Pyramide <math> M </math> besteht aus vier identischen Glaswandflächen <math> A_\text{Seitenfläche} \approx 478{,}45~\mathrm{m}^2</math>: | |||
<math> | |||
\begin{align} | |||
& & M &= 4 \cdot A_\text{Seitenfläche} & & \mid \text{Werte einsetzen} \\ | |||
\Leftrightarrow & & M &\approx 4 \cdot 478{,}45~\mathrm{m}^2 & & \mid \text{Termumformung} \\ | |||
\Leftrightarrow & & M &\approx 1913{,}8~\mathrm{m}^2 & & | |||
\end{align} | |||
</math> | |||
Damit besitzt eine Glaswand eine Fläche von etwa <math>478{,}45~\mathrm{m}^2 </math>. Die gesamte Glasfläche der Pyramide beträgt demnach rund <math> 1913{,}8~\mathrm{m}^2 </math>. |2=Lösung zu c) anzeigen|3=Lösung zu c) verbergen}} | |||
'''d)''' Vergleiche deine Vorgehensweise in den Aufgabenteilen b) und c) hinsichtlich gemeinsamer Teilschritte? Markiere und benenne diese in deinen Aufzeichnungen. | |||
|Arbeitsmethode}} | |||
{{Box|1=Checkliste zur Bestimmung der Mantelfläche|2= | |||
In Aufgabe 2 hast du bereits eine Möglichkeit zur Bestimmung der Mantelfläche einer Pyramide erkundet und in Aufgabenteil 2d) auch schon angefangen, die dazu nötige Vorgehensweise zu beschreiben. | |||
'''a)''' In dem folgenden Applet wird die allgemeine Vorgehensweise noch einmal zusammengefasst. Bringe die einzelnen Teilschritte in die richtige Reihenfolge. | |||
{{LearningApp|width=100%|height=500px|app=p74tsoa4c22}} | |||
'''b)''' [[Datei:Grundlagen-bearbeiten.png|30px|middle]] '''zurück zum Arbeitsblatt''' | |||
Übertrage die Checkliste auf das Arbeitsblatt „Pyramiden verknüpfen“. | |||
|3=Hervorhebung1}} |
Aktuelle Version vom 16. November 2022, 16:14 Uhr