Benutzer:Buss-Haskert/Quadratische Funktionen: Unterschied zwischen den Versionen
K (Übungen ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
K (Übungen) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 343: | Zeile 343: | ||
Lösung: Die Daten passen zusammen.|2=Tipp 2 zu Nr. 3|3=Verbergen}} | Lösung: Die Daten passen zusammen.|2=Tipp 2 zu Nr. 3|3=Verbergen}} | ||
=== Scheitelpunktform quadratischer Funktionen === | ===Scheitelpunktform quadratischer Funktionen=== | ||
{{Box|Die Parameter sportlich erarbeiten|Bearbeite im [[Herta-Lebenstein-Realschule/Die Scheitelpunktform quadratischer Funktionen sportlich erarbeiten|'''Lernpfad''']] das Kapitel zu'''<big> d</big>'''etlef und '''<big> e</big>'''mil.|Üben}} | {{Box|Die Parameter sportlich erarbeiten|Bearbeite im [[Herta-Lebenstein-Realschule/Die Scheitelpunktform quadratischer Funktionen sportlich erarbeiten|'''Lernpfad''']] das Kapitel zu'''<big> d</big>'''etlef und '''<big> e</big>'''mil.|Üben}} | ||
Zeile 354: | Zeile 354: | ||
Der Parameter d verschiebt den Scheitelpunkt in x-Richtung: d>0 nach links verschoben ("dusseliger Detelf") und d<0 nach rechts.<br> Der Parameter e verschiebt den Scheitelpunkt in y-Richtung (nach oben bzw. unten).|3=Arbeitsmethode}} | Der Parameter d verschiebt den Scheitelpunkt in x-Richtung: d>0 nach links verschoben ("dusseliger Detelf") und d<0 nach rechts.<br> Der Parameter e verschiebt den Scheitelpunkt in y-Richtung (nach oben bzw. unten).|3=Arbeitsmethode}} | ||
{{Box|Übung 6 - Verschobene Normaparabel|Bearbeite die nachfolgenden Übungen auf der Seite realmath. Erkläre deinem Partner/deiner Partnerin, was in dieser Übung jeweils gefestigt werden soll. Notiere zu jeder Aufgabe ein Beispiel mit deinem erworbenen Wissen in dein Heft. | {{Box|Übung 6 - Verschobene Normaparabel|Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 200 Punkte gesammelt hast. Erkläre deinem Partner/deiner Partnerin, was in dieser Übung jeweils gefestigt werden soll. Notiere zu jeder Aufgabe ein Beispiel mit deinem erworbenen Wissen in dein Heft. | ||
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen2.html Aufgabe 1] | * [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen2.html Aufgabe 1] | ||
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen1.html Aufgabe 2] | * [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen1.html Aufgabe 2] | ||
Zeile 363: | Zeile 363: | ||
* [http://realmath.de/Neues/Klasse9/parabueb/parabscheit3.html Aufgabe 7] | * [http://realmath.de/Neues/Klasse9/parabueb/parabscheit3.html Aufgabe 7] | ||
|Üben}} | |Üben}} | ||
<br> | |||
<big>Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle:</big> | |||
[[Datei:Idee Flipchart.png|links|rahmenlos|100x100px]] Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben. Das Video erklärt dies noch einmal anschaulich. | |||
{{#ev:youtube|DeQRf1e4qZw|800|center|||start=0&end=89}} | |||
<br> | |||
{{Box|Übung 7|Nachdem du die Aufgaben auf der Seite realmath erfolgreich gelöst und diskutiert hast, sollten die nachfolgenden Aufgaben aus dem Buch kein Problem mehr für dich sein. | |||
* S.16 Nr. 1 | |||
* S.16 Nr. 2 | |||
* S.16 Nr. 3 | |||
* S.16 Nr. 4 | |||
* S.16 Nr. 5 | |||
* S.16 Nr. 8 (Nutze das obige Applet.) | |||
* S.16 Nr. 9 (Nutze das obige Applet.) | |||
* S.16 Nr. 10 |Üben}} | |||
{{Box|Übung 8 - Punktprobe|Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt. | |||
* S. 16 Nr. 6|Üben}} | |||
IDEENSAMMLUNG | IDEENSAMMLUNG | ||
Modellieren | Modellieren | ||
[http://realmath.de/Neues/Klasse9/parabueb/basketball.html Aufgabe Basektball (mit Lösungsschritten] | [http://realmath.de/Neues/Klasse9/parabueb/basketball.html Aufgabe Basektball (mit Lösungsschritten] |
Version vom 9. Juli 2021, 14:54 Uhr
SEITE IM AUFBAU
Mögliche Fragen könnten sein:
- In welcher Höhe wird der Ball abgeworfen?
- Wie hoch fliegt der Ball maximal?
- Wie weit fliegt der Ball?
Frage | Mathematik |
In welcher Höhe wird der Ball abgeworfen? | Schnittpunkt mit der y-Achse, y-Achsenabschnitt
x = 0 |
Wie hoch fliegt der Ball maximal? | Scheitelpunkt S (d|e) |
Wie weit fliegt der Ball? | Nullstelle
y = 0 |
Die Flugkurven haben alle eine Gemeinsamkeit. Ihre Form nennt man Parabel. Sie sind die Graphen/Schaubilder quadratischer Funktionen.
(auch als kahoot!)
Beispiel 1:
Link zum Applet (falls es nicht vollständig dargestellt wird): [1]
Applet von C. Buß-Haskert
Beispiel 2:
Link zum Applet (falls es nicht vollständig dargestellt wird): [2]
Applet von C. Buß-Haskert
Beispiel 3:
Link zum Applet (falls es nicht vollständig dargestellt wird): [3]
Applet von C. Buß-Haskert
Link zum Applet (falls es nicht vollständig dargestellt wird): [4]
Applet von Bobby Knurek
Link zum Applet (falls es nicht vollständig dargestellt wird):[5] br>
Applet von Luc Morth
Link zum Applet (falls es nicht vollständig dargestellt wird):[6]
Applet von G.von Lechberg
Nun gilt es, die Bedeutung der Parameter a, d und e bzw. b und c zu erarbeiten!
Dazu beginnen wir mit der einfachsten Form der quadratischen Funktion, nämlich für a=1; d=0 und e=0 bzw. b=0 und c=0.
Diese Gleichung lautet f(x) = x².
Die Normalparabel
Erinnerung: (-2)² = (-2)·(-2) = +4
(Falls du später den Taschenrechner benutzt, denke an die Klammer, falls die Zahl ein Minuszeichen als Vorzeichen hat.)
Fülle den Lückentext aus.
Du kannst mithilfe des Schaubildes (Normalparabel) entscheiden, welche Punkte auf der Normalparabel liegen und welche nicht:
Wie kannst du rechnerisch prüfen, ob ein Punkt auf der Normalparabel liegt oder nicht?
Beispiel:
Liegt der Punkt I(2,5|6,25) auf der Normalparabel?
f(x) = x²
6,25 = 2,5²
6,25 = 6,25 (w), also liegt der Punkt I auf der Normalparabel.
Liegt der Punkt H(-1,5|-2,25) auf der Normalparabel?
f(x) = x²
-2,25 = (-1,5)²
-2,25 = 2,25 (f), also liegt der Punkt H nicht auf der Normalparabel.
Beispiel:
Bestimme die fehlende Koordinate von P(6|__) auf der Normalparabel.
f(x) = x²
y = 6²
y = 36, also P(6|36)
Bestimme die fehlende Koordinate von Q(__|1,69) auf der Normalparabel.
f(x) = x²
1,69 = x² |
= x
1,3 = x1; -1,3 = x2, also lautet Q1(1,3|1,69) und Q2(-1,3|1,69).
Es gibt zwei Punkte, die den y-Wert 1,69 haben, denn die Normalparabel ist symmetrisch zur y-Achse.
Die gestreckte und gestauchte Parabel: Bedeutung des Parameters a in f(x) = ax²
Link zum Applet (falls es nicht vollständig dargestellt wird):[7]
Applet von G.von Lechberg
Wie erstelle ich einen Schieberegler für die Funktionsgleichung f(x) = ax²?
Gehe vor, wie in den Bildern beschrieben:
Zusammenfassung:
Lösung:
geg: f(x) = ax²; P(2|-8)
ges: a
Setze die Koordinaten des Punktes P in die Funktionsgleichung ein und löse die Gleichung nach a auf.
f(x) = ax²;P(2|-8)
-8 = a·2²
-8 = a·4 |:4
-2 = a
also f(x) = -2x².
Form: Die Parabel zur Funktionsgleichung f(x) = -2x² ist eine nach unten geöffnete, gestreckte Parabel. Der Scheitelpunkt liegt im Ursprung S(0|0).
Mögliche Fragen:
- Wie lautet die Funktionsgleichung für das Halteseil? Zeichne das Koordinatensystem passend für die Funktionsgleichung der Form f(x) = ax² ein.
Wie lang ist längste das Lastkabel zwischen Halteseil und Straße?
Wie lang sind alle Lastkabel der Brücke insgesamt?
Realität: Halteseil der Brücke.
Mathematisches Modell: Parabel, quadratische Funktion
Rechnen: Lege das Koordinatenkreuz so, dass der Scheitelpunkt im Ursprung liegt. Damit hat die Funktionsgleichung die Form f(x) = ax².
Du kennst die Punkte A(-640|144) und B(640|144). Setze diese in die Gleichung ein und löse nach a auf.
Für die Lastseile kennst du die x-Koordinate, z.B. x = -600. Bestimme die zugehörige y-Koordinate, dies ist die Länge des Seils.
Tipp: Skizze!
Zeichne das Koordinatensystem so ein, dass der Scheitelpunkt S im Ursprung liegt. Dann kannst du die Funktionsgleichung der Form f(x) = ax² nutzen.
Beschrifte die Skizze mit den gegebenen Größen.
Koordinatenkreuz passend eingetragen:
Die Spannweite w=486m und die Höhe h=88m führt zu den Punkten P(243|88) und Q(-243|88). Setze die Koordinaten passend in die Funktionsgleichung f(x) = ax² ein und löse nach a auf.
Es können die Punkte P(-23,5|-6,6), Q(-17|-6,5), R(-10,5|-1,3) und S(0|0) abgelesen werden. Die Koordinaten von P eingesetzt in die Funktionsgleichung f(x) = ax² ergeben für a den Wert a=≈-0,012.
Bestimme a mithilfe des Punktes Q: a=≈-0,012.
Bestimme a mithilfe des Punktes R: a=≈-0,012.
Die Spannweite beträgt w=158m, die Höhe h=69m. Daher kennst du die Punkte P(-79|-69) und Q(79|-69)
Setze die Koordianten in die Funktionsgleichung ein und prüfe, ob du a=- erhältst.
ODER
Setze die x-Koordiante eines Punktes in die Funktionsgleichung ein und prüfe, ob die berechnete y-Koordinate passt.
Scheitelpunktform quadratischer Funktionen
Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle:
Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben. Das Video erklärt dies noch einmal anschaulich.
IDEENSAMMLUNG Modellieren Aufgabe Basektball (mit Lösungsschritten