Benutzer:Laura Wirth/Testseite: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 71: Zeile 71:
\end{array}</math>
\end{array}</math>


{{Box |1=Aufgabe 1: Vergleich Zins und Zinseszins |2= Hier ist ein Diagramm von der Entwicklung von Claras Kontostand aus dem Beispiel für <math>50</math> Jahre dargestellt.
{{Box
|1=erweiterte Zinsformel für den Zinseszins
|2=Die Zinsformel kann auch für die Berechnung des Zinseszins genutzt werden:
<math> K=100</math> € werden mit einem Zinssatz <math> p=5</math><\br>% vier Jahre lang gespart.
<math>K_1</math> bezeichnet das Kapital nach einem Jahr, <math>K_2</math> nach zwei Jahren und so weiter. Damit ist <math>K_n</math> das Kapital nach <math>n</math> Jahren.


[[Datei:Claras Kontostand v 3.png|600px|right|Claras Kontostand]]
{{Lösung versteckt|1=
'''a)''' Ordne den Graphen die verschiedenen Entwicklungen zu.


<div class="zuordnungs-quiz">
Für das erste Jahr lässt sich das Kapital so berechnen:
{{{!}}
<math> K\cdot(1 + 1\cdot \frac{z}{100}) = K_1</math>  
{{!}}roter Graph{{!}}{{!}}Entwicklung mit Zinseszins
{{!}}-
{{!}}blauer Graph{{!}}{{!}}Entwicklung mit Zinsen ohne Zinseszins
{{!}}-
{{!}}grüner Graph{{!}}{{!}}Entwicklung ohne Zinsen
{{!}}}
</div>


'''b)''' Was fällt dir bei der Betrachtung der verschiedenen Verläufe der Graphen auf? Was bedeuten diese Auffäligkeiten für Claras Kontostand?
Für <math>K = 100</math> € folgt dann <math>100 </math>€<math>\cdot(1 + 1\cdot \frac{z}{100}) = 105</math> €.


Für das zweite Jahr lässt sich das Kapital so berechnen:
<math> K_1\cdot(1 + 1\cdot \frac{z}{100}) = K_2</math>
<math> = 105</math> € <math>\cdot(1 + 1\cdot \frac{z}{100}) = 110{,}25</math> €. |2=Bisherige Rechenweise |3=Einklappen}}


{{Lösung versteckt|1= Schaue dir vor allem die Unterschiede zwischen der Entwicklung mit Zinseszinsen und der Entwicklung mit Zinsen, aber ohne Zinseszinsen an.  Was bedeuten die Abstände zwischen den Graphen für Claras Kontostand?|2=Allgemeiner Tipp zu Aufgabe 1. b) |3=Einklappen}}
{{Lösung versteckt|1= Das kann auch in einem Rechenschritt vereinfacht werden:


{{Lösung versteckt|1= Hier gibt es kein richtig oder falsch. Dir ist bestimmt viel Unterschiedliches aufgefallen.
Jetz setzen wir für das Kapital nach einem Jahr <math> K_1</math> in die Formel für das erste Jahr <math> K\cdot(1 + 1\cdot \frac{z}{100}) = K_1</math> ein:
<math> (K_1)\cdot(1 + 1\cdot \frac{z}{100}) = (K\cdot(1 + 1\cdot \frac{z}{100}))\cdot(1 + 1\cdot \frac{z}{100}) = K_2</math>


Hier sind nur einige Auffälligkeiten:
Für das dritte Jahr ergibt sich dann


Am Anfang sind der rote und der blaue Graph fast gleich, erst ab etwa <math>10</math> Jahren gibt es nennenswerte Unterschiede. Das bedeutet, dass es für die ersten Jahre fast keinen Unterschied macht, ob Clara Zinseszins bekommt oder nur einfache Zinsen.
<math>K\cdot(1 + 1\cdot \frac{z}{100})\cdot(1 + 1\cdot \frac{z}{100})\cdot(1 + 1\cdot \frac{z}{100}) = K_3</math>


Ab <math>10</math> Jahren wird der Unterschied zwischen dem blauen und den roten Graphen immer größer. Das bedeutet, dass es langfristig einen erheblichen Unterschied macht, ob Clara Zinseszins bekommt oder nur einfachen Zins.
Du kannst für jedes weitere Jahr einmal die Formel mit <math>(1 + 1\cdot \frac{z}{100})</math> multiplizieren.|2=Vereinfachen |3=Einklappen}}


Der Unterschied zwischen dem blauen und roten Graphen wird mit den Jahren immer schneller größer. Das bedeutet: Je länger Clara spart, desto mehr Gewicht hat der Zinseszins gegenüber dem einfachen Zins. |2=Lösung zu 1. b)|3=Einklappen}}
{{Lösung versteckt|1= Noch kürzer lässt sich das als Potenz schreiben:
|3=Arbeitsmethode |Farbe={{Farbe|orange}} }}
<math>K\cdot(1 + 1\cdot \frac{z}{100})\cdot(1 + 1\cdot \frac{z}{100})= K\cdot(1 + 1\cdot \frac{z}{100})^2= K_2</math>
 
oder für das dritte Jahr
 
<math>K\cdot(1 + 1\cdot \frac{z}{100})\cdot(1 + 1\cdot \frac{z}{100})\cdot(1 + 1\cdot \frac{z}{100})= K\cdot(1 + 1\cdot \frac{z}{100})^3= K_3</math>.
 
Für ein beliebiges Jahr, das Jahr Nummer <math>n</math> wird dann  <math>K</math> insgesamt <math>n</math>-mal mit dem Faktor <math>1 + 1\cdot \frac{z}{100}</math> multipliziert:
<math>K\cdot(1 + 1\cdot \frac{z}{100})\cdot</math> ... <math>n</math>- mal ...<math>\cdot (1 + 1\cdot \frac{z}{100})= K\cdot(1 + 1\cdot \frac{z}{100})^n= K_n</math>.|2=Die erweiterte Zinsformel |3=Einklappen}}
 
 
|3=Merksatz}}

Version vom 7. Dezember 2020, 10:35 Uhr

Spielwiese

Schreiben im Wiki

"Neben normalem Text kann man auch kursiven oder fett gedruckten Text schreiben. Ebenso ist eine Kombination aus beidem möglich. Grüner Text ist schon etwas schwieriger und funktioniert über die Quelltextbearbeitung."

Vorlagen

Ganz einfach per Mausklick aktivierbar


Aufgabe 1: Ableitung
Bestimme die Ableitung von .


Übung 1: Ableitung
Bestimme die Ableitung von und .


Merke
Der Merksatz steht auf S. 43 im Schulbuch.


Dateien

Freiwurf beim Basketball
Pi-CM

Interaktive Applets



GeoGebra




Mehrzeilige Formeln etc.





erweiterte Zinsformel für den Zinseszins

Die Zinsformel kann auch für die Berechnung des Zinseszins genutzt werden: € werden mit einem Zinssatz <\br>% vier Jahre lang gespart. bezeichnet das Kapital nach einem Jahr, nach zwei Jahren und so weiter. Damit ist das Kapital nach Jahren.

Für das erste Jahr lässt sich das Kapital so berechnen:

Für € folgt dann €.

Für das zweite Jahr lässt sich das Kapital so berechnen:

€.

Das kann auch in einem Rechenschritt vereinfacht werden:

Jetz setzen wir für das Kapital nach einem Jahr in die Formel für das erste Jahr ein:

Für das dritte Jahr ergibt sich dann

Du kannst für jedes weitere Jahr einmal die Formel mit multiplizieren.

Noch kürzer lässt sich das als Potenz schreiben:

oder für das dritte Jahr

.

Für ein beliebiges Jahr, das Jahr Nummer wird dann insgesamt -mal mit dem Faktor multipliziert:

... - mal ....