Laplace Aufgaben/Larissa: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 8: | Zeile 8: | ||
'''a)''' Dame | '''a)''' Dame | ||
{{Lösung versteckt|1='''a)''' Die Gesamtmenge der Karten beträgt 32. Die Wahrscheinlichkeit für jede | {{Lösung versteckt|1='''a)''' Die Gesamtmenge der Karten beträgt 32. Die Wahrscheinlichkeit für jede einzelne Karte beträgt also 1/32. (Laplace) | ||
E = Eine Dame wird gezogen | E = Eine Dame wird gezogen | ||
Für das Ereignis eine Dame zu ziehen gibt es insgesamt 4 Karten. Also 4 mögliche Ergebnisse, dessen Wahrscheinlichkeiten nach der Summenregel addiert werden können. | Für das Ereignis eine Dame zu ziehen gibt es insgesamt 4 Karten. Also 4 mögliche Ergebnisse, dessen Wahrscheinlichkeiten nach der Summenregel addiert werden können. | ||
P(E) = 1/32 + 1/32 + 1/32 + 1/32 = 4 * 1/32 = 4/32 = 1/8|2=Lösung|3=Lösung}} | P(E) = 1/32 + 1/32 + 1/32 + 1/32 = 4 * 1/32 = 4/32 = 1/8|2=Lösung|3=Lösung}} | ||
Version vom 18. November 2020, 12:40 Uhr
Laplace-Experimente
a) Die Gesamtmenge der Karten beträgt 32. Die Wahrscheinlichkeit für jede einzelnen Karte beträgt also 1/32. (Laplace) E = Eine Dame wird gezogen Für das Ereignis eine Dame zu ziehen gibt es insgesamt 4 Karten. Also 4 mögliche Ergebnisse, dessen Wahrscheinlichkeiten nach der Summenregel addiert werden können.
P(E) = 1/32 + 1/32 + 1/32 + 1/32 = 4 * 1/32 = 4/32 = 1/8