Benutzer:Buss-Haskert/Vierecke und Dreiecke/Winkelsumme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 12: | Zeile 12: | ||
In jedem Viereck beträgt die Winkelsumme '''360°()''' <br> | In jedem Viereck beträgt die Winkelsumme '''360°()''' <br> | ||
Also gilt: <math>\alpha</math> + <math>\beta</math> + <math>\gamma</math> + <math>\delta</math> = '''360()'''. | Also gilt: <math>\alpha</math> + <math>\beta</math> + <math>\gamma</math> + <math>\delta</math> = '''360()'''. | ||
</div> | </div> | ||
Version vom 4. Oktober 2020, 15:33 Uhr
2) Winkelsumme im Viereck
Verändere die Form des Vierecks, indem du die Punkte verschiebst. Berechne jeweils die Winkelsumme. Was fällt dir auf?
In jedem Viereck beträgt die Winkelsumme 360°()
Also gilt: + + + = 360().
Du kannst das Grad-Zeichen ° auf dem iPad eingeben, indem du lange auf die Ziffer 0 drückst.
Nutze Eigenschaften der Winkel im symmetrischen Trapez: Benachbarte Winkel sind gleich groß. Also ist = 45°
Zeichne ein symmetrisches Trapez. Wo muss der Winkel 110° liegen? Schau eventuell die Skizze von Nr. 2 an.
ist ein Nebenwinkel zu 50°. Nebenwinkel ergänzen sich zu 180°
ist ein Nebenwinkel zu 60°. Nebenwinkel ergänzen sich zu 180°
ist ein Nebenwinkel zu 100°, ist ein Nebenwinkel zu 80°, Nebenwinkel ergänzen sich zu 180°
und sind Nebenwinkel, ist ein Scheitelwinkel zu 140°. Berechne mit der Winkelsumme.