Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Umgekehrt proportionale Zuordnungen: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
(Unterseite des Lernpfades erzeugt) Markierung: 2017-Quelltext-Bearbeitung |
K (Navigation ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
{{Navigation|[[Buss-Haskert/Lernpfad Zuordnungen und Dreisatz| 1. Zuordnungen]]<br>[[Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Proportionale Zuordnungen| 2. Proportionale Zuordnungen und Dreisatz]]<br>[[Buss-Haskert/Lernpfad Zuordnungen und Dreisatz/Umgekehrt proportionale Zuordnungen| 3. Umgekehrt proportionale Zuordnungen und Dreisatz]]}} | |||
===3. Umgekehrt proportionale Zuordnungen und Dreisatz=== | ===3. Umgekehrt proportionale Zuordnungen und Dreisatz=== | ||
Version vom 31. August 2020, 16:41 Uhr
1. Zuordnungen
2. Proportionale Zuordnungen und Dreisatz
3. Umgekehrt proportionale Zuordnungen und Dreisatz
2. Proportionale Zuordnungen und Dreisatz
3. Umgekehrt proportionale Zuordnungen und Dreisatz
3. Umgekehrt proportionale Zuordnungen und Dreisatz
3.1 Umgekehrt proportionale Zuordnungen erkennen
Die Eingabegröße ist die Anzahl der Personen, die aufräumen. Zugeordnet wird dann die Zeit, die sie für das Aufräumen benötigen. Wie kannst du den Satz beenden:"Je mehr Personen helfen, desto ...
Erinnerst du dich an die 4 Darstellungsmöglichkeiten:
1. Text/Pfeilbild
2. Wertetabelle
3. Rechenvorschrift
Mögliche Fragen könnten lauten
- Wie lange dauerte das Aufräumen, wenn 2 Personen aufräumten?
Zusammenfassung:
Das nachfolgende Video erklärt noch einmal, wie du eine Wertetabelle auf umgekehrte Proportionalität prüfen kannst:
3.2 Dreisatz bei umgekehrt proportionalen Zuordnungen
Die Zuordnung Anzahl der Schüler benötigte Zeit ist umgekehrt proportional, denn doppelt so viele Schüler benötigen nur halb so lange. Daher können wir mit drei Schritten die Zeit zum Aufräumen berechnen:
3.3) Vermische Übungen zu umgekehrt proportionalen Zuorndungen
4. Bunte Mischung
Bei den nächsten Aufgaben musst du entscheiden, ob es sich um eine proportionale oder um eine umgekehrt proportionale Zuordnung handelt. Dann kannst du die Aufgabe mit dem Dreisatz lösen.