Benutzer:David WWU-6/testseite: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 12: | Zeile 12: | ||
{{Box | Merke: Definition 2 | {{Box | Merke: Definition 2 | ||
|An einem '''Wendepunkt''' <math> x_W </math> einer Funktion <math>f(x)</math> ist die '''Steigung''' in der näheren Umgebung '''maximal bzw. minimal'''. Somit folgt, dass die Ableitung an dieser Stelle einen Extrempunkt aufweist. Daraus ergibt sich das notwendige Kriterium für einen Wendepunkt. Aus dem vorherigen Kapitel haben wir gelernt: Wenn die Funktion <math>f'(x)</math> im Punkt <math> x_W </math> einen Extrempunkt aufweist, so ist die Ableitung dieser Funktion <math>f''(x)</math> in diesem Punkt gleich 0. Das hinreichende Kriterium ergibt sich, wie im vorherigen Kapitel. | |An einem '''Wendepunkt''' <math> x_W </math> einer Funktion <math>f(x)=x+2</math> ist die '''Steigung''' in der näheren Umgebung '''maximal bzw. minimal'''. Somit folgt, dass die Ableitung an dieser Stelle einen Extrempunkt aufweist. Daraus ergibt sich das notwendige Kriterium für einen Wendepunkt. Aus dem vorherigen Kapitel haben wir gelernt: Wenn die Funktion <math>f'(x)</math> im Punkt <math> x_W </math> einen Extrempunkt aufweist, so ist die Ableitung dieser Funktion <math>f''(x)</math> in diesem Punkt gleich 0. Das hinreichende Kriterium ergibt sich, wie im vorherigen Kapitel. | ||
<math> f(x)= | <math> f(x)=2</math> | ||
'''Zusammenfassung:''' | '''Zusammenfassung:''' |
Aktuelle Version vom 27. April 2020, 09:27 Uhr
Wendepunkte