Julius-Echter-Gymnasium/Mathematik/Rechnen mit rationalen Zahlen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Main>Dietinka JEG
Keine Bearbeitungszusammenfassung
Main>Myriam Lang
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
<u></u><div style="padding:1px;background: #FF0000;border:0px groove;">
<u></u><div style="padding:1px;background: #FF0000;border:0px groove;">
<div style="margin:0; margin-right:50px; margin-left:50px; border:5px solid #FFFFFF; padding: 1em 1em 1em 1em; background-color:#FFFFFF; align:left;">
<div style="margin:0; margin-right:50px; margin-left:50px; border:5px solid #FFFFFF; padding: 1em 1em 1em 1em; background-color:#FFFFFF; align:left;">
<big><span style="color:#C00000">&nbsp;
<big><span style="color:#C00000">&nbsp;


== <colorize>Was sind rationale Zahlen?</colorize> ==
== <colorize>Was sind rationale Zahlen?</colorize> ==


Unter rationalen Zahlen versteht man alle, dir bereits bekannten, "ganzen Zahlen" (Z)
Unter rationalen Zahlen versteht man alle dir bereits bekannten "ganzen Zahlen" (Z).


Zu den rationalen Zahlen (Q) gehören jetzt aber außerdem noch Brüche und Dezimalzahlen.
Zu den rationalen Zahlen (Q) gehören jetzt aber außerdem noch alle Brüche und Dezimalzahlen.


<span style="color: #FF0000">Bsp. zu Brüchen: </span> &nbsp;&nbsp;<math>\frac{1}{2}</math>&nbsp;&nbsp; oder  <math>3</math>&nbsp;&nbsp;<math>\frac{3}{6}</math>&nbsp;&nbsp; oder &nbsp;&nbsp;- <math>\frac{3}{4}</math>&nbsp;&nbsp;
<span style="color: #FF0000">Bsp. zu Brüchen: </span> &nbsp;&nbsp;<math>\frac{1}{2}</math>&nbsp;&nbsp; oder  <math>3</math>&nbsp;&nbsp;<math>\frac{3}{6}</math>&nbsp;&nbsp; oder &nbsp;&nbsp;- <math>\frac{3}{4}</math>&nbsp;&nbsp;
Zeile 22: Zeile 19:
[[Datei:Snipping tool.PNG|Rationale Zahlen, Grafik|]]
[[Datei:Snipping tool.PNG|Rationale Zahlen, Grafik|]]


'''<span style="color: #FF0000"> Beachte:</span>''' Die Division mit rationalen Zahlen ist nun auch möglich, wenn der Dividend kein ganzzahliges Vielfaches des Divisors ist. Durch die Zahl 0 darf jedoch immer noch nicht dividiert werden!
'''<span style="color: #FF0000"> Beachte:</span>''' Die Division mit rationalen Zahlen ist nun auch möglich, wenn der Dividend kein ganzzahliges Vielfaches des Divisors ist. <br />
Durch die Zahl 0 darf jedoch immer noch nicht dividiert werden!
<br />


Verschiedene Schreibweisen: &nbsp;&nbsp;<math>\frac{1}{4}</math>&nbsp;&nbsp; = <math>0,25</math> =  <math>25%</math>
Verschiedene Schreibweisen: &nbsp;&nbsp;<math>\frac{1}{4}</math>&nbsp;&nbsp; = <math>0,25</math> =  <math>25%</math>
<br />


Alle Darstellungsformen sind mathematisch korrekt und bedeuten das Gleiche. Je nach Aufgabenstellung könnt ihr die Zahlen nach Belieben umformen.
Alle Darstellungsformen sind mathematisch korrekt und bedeuten das Gleiche. <br />
Je nach Aufgabenstellung könnt ihr die Zahlen nach Belieben umformen.


Verstanden? Dann ordne doch die unten stehen grünen Zahlen passend zu den bereits vorgegeben Zahlen zu.
Verstanden? <br />
Dann ordne doch die unten stehenden grünen Zahlen passend den bereits vorgegeben Zahlen zu.




Zeile 34: Zeile 36:


{|  
{|  
| 0,2 || 20% ||<math>\frac{1}{5}</math>
| 0,4 || 40% || <math>\frac{2}{5}</math>
|-
|-
| 80% || 0,8 ||<math>\frac{4}{5}</math>   
| 37,5% || 0,375 || <math>\frac{3}{8}</math> 
|-
| <math>\frac{9}{20}</math> || 45%|| 0,45
|-
| 1,1 || 110% || <math>\frac{11}{10}</math>
|-
| 80% || 0,8 || <math>\frac{4}{5}</math>   
|-
|-
| <math>\frac{9}{20}</math> || 45%|| 0,45
| <math>\frac{9}{20}</math> || 45%|| 0,45
Zeile 53: Zeile 61:


<div style="margin:0; margin-right:4px; margin-left:3px; border:5px solid #FF0000; padding: 1em 1em 1em 1em; background-color:#FFFFF; align:left;">
<div style="margin:0; margin-right:4px; margin-left:3px; border:5px solid #FF0000; padding: 1em 1em 1em 1em; background-color:#FFFFF; align:left;">
<table border="0" width="600px" cellpadding=5 cellspacing=15>
<tr><td  width="100px" valign="top">
<big>'''<span style="color: #FF0000">Zur Erinnerung </span>'''</big>
<big>'''<span style="color: #FF0000">Zur Erinnerung </span>'''</big>


Zeile 61: Zeile 67:
'''1. Addition'''
'''1. Addition'''


Gleiche Vorzeichen:      addieren und Vorzeichen in die Summe übernehmen
Gleiche Vorzeichen:      Addiere die Summanden und übernimm das gemeinsame Vorzeichen in die Summe.
 
Verschiedene Vorzeichen: Subtrahiere die kleinere Zahl von der größeren. Übernimm das Vorzeichen der größeren Zahl.
 
 
 


Verschiedene Vorzeichen: Vorzeichen des größeren Betrags in die Summe übernehmen




'''2. Subtraktion'''
'''2. Subtraktion'''


Kleineren Betrag vom größeren subtrahieren = Positives Ergebnis
Subtrahierst du eine kleinere Zahl von einer größeren, dann ist dein Ergebnis positiv.


Größeren Betrag von kleinerem subtrahieren = Negatives Ergebnis
Subtrahierst du eine größere Zahl von einer kleineren, dann ist dein Ergebnis negativ.


Zwei negative Beträge subtrahieren = Negatives Ergebnis
Subtrahierst du zwei negative Beträge subtrahieren, dann ist dein Ergebnis negativ.




'''3.Multiplikation'''


multipliziere die Faktoren
[[Datei:Multiplikation bsp.PNG|rechts|210px|Multiplikation]]


:-> bei gleichen Vorzeichen:'''<span style="color: #FF0000"> + </span>'''


:-> bei ungleichen Vorzeichen: '''<span style="color: #FF0000"> − </span>'''
'''3. Multiplikation'''


Multipliziere die beiden Faktoren miteinander.


[[Datei:Multiplikation bsp.PNG|Multiplikation]]
:-> Bei <span style="color: #FF0000">gleichen</span> Vorzeichen ist dein Ergebnis'''<span style="color: #FF0000"> positiv </span>'''.


:-> Bei <span style="color: #FF0000">ungleichen</span> Vorzeichen ist dein Ergebnis '''<span style="color: #FF0000"> negativ </span>'''.


'''4.Divison:'''


dividiere die Faktoren


:-> bei gleichen Vorzeichen:'''<span style="color: #FF0000"> + </span>'''


:-> bei ungleichen Vorzeichen: '''<span style="color: #FF0000"> − </span>'''
[[Datei:Division bsp.PNG|rechts|210px|Division]]




[[Datei:Division bsp.PNG|Division]]
'''4. Divison:'''


Dividiere den Dividend durch den Divisor.


:-> Bei <span style="color: #FF0000">gleichen</span> Vorzeichen ist dein Ergebnis'''<span style="color: #FF0000"> positiv </span>'''.


:-> Bei <span style="color: #FF0000">ungleichen</span> Vorzeichen ist dein Ergebnis '''<span style="color: #FF0000"> negativ </span>'''.


</td></tr></table>
</div>
</div>


<br />
<br />


Hier hast du noch Aufgaben um das Gelernte anzuwenden. Viel Spaß:)
Mit den folgenden Aufgaben kannst du das Gelernte anwenden. Viel Spaß:)




Zeile 117: Zeile 128:
Welche Zahl muss man zu (−3,4) addieren um 5 zu erhalten? '''8,4'''
Welche Zahl muss man zu (−3,4) addieren um 5 zu erhalten? '''8,4'''


Welche Zahl muss man von 2,7 subtrahieren um (−1) zu erhalten?'''−3,7'''
Welche Zahl muss man von 2,7 subtrahieren um (−1) zu erhalten?'''3,7'''


Welche Zahl muss man zu <math>\frac{4}{8}</math> addieren um 1 zu erhalten? '''<math>\frac{2}{4}</math>'''
Welche Zahl muss man zu <math>\frac{4}{8}</math> addieren um 1 zu erhalten? '''<math>\frac{1}{2}</math>'''


Welche Zahl muss man zu -2<math>\frac{2}{4}</math> addieren um (−1) zu erhalten? '''<math>\frac{3}{2}</math>'''
Welche Zahl muss man zu -2<math>\frac{2}{4}</math> addieren um (−1) zu erhalten? '''<math>\frac{3}{2}</math>'''
Zeile 130: Zeile 141:
</div>
</div>


Aufgabe 2
Aufgabe 2:


<iframe src="https://learningapps.org/watch?v=p7zc9uzxa17" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
<iframe src="https://learningapps.org/watch?v=p7zc9uzxa17" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
Zeile 146: Zeile 157:


{{Vorlage:Lesepfad Ende
{{Vorlage:Lesepfad Ende
|Link zurück=[[Julius-Echter-Gymnasium/Mathematik/Oberflächeninhalt|zum Oberflächeninhalt]]                   
|Link zurück=[[Julius-Echter-Gymnasium/Mathematik/Netze|zu Netzen und Oberflächeninhalt]]                   
|Link vor=[[Julius-Echter-Gymnasium/Mathmatik/Rechenvorteile|zu Rechenvorteile]]
|Link vor=[[Julius-Echter-Gymnasium/Mathmatik/Rechenvorteile|zu Rechenvorteilen]]
|Text Copyright=
|Text Copyright=
}}
}}

Version vom 24. Januar 2020, 20:13 Uhr

 

<colorize>Was sind rationale Zahlen?</colorize>

Unter rationalen Zahlen versteht man alle dir bereits bekannten "ganzen Zahlen" (Z).

Zu den rationalen Zahlen (Q) gehören jetzt aber außerdem noch alle Brüche und Dezimalzahlen.

Bsp. zu Brüchen:      oder      oder   -   

Bsp. zu Dezimalzahlen:    oder ()


<colorize>1. Die Menge der rationalen Zahlen</colorize>


Datei:Snipping tool.PNG

Beachte: Die Division mit rationalen Zahlen ist nun auch möglich, wenn der Dividend kein ganzzahliges Vielfaches des Divisors ist.
Durch die Zahl 0 darf jedoch immer noch nicht dividiert werden!

Verschiedene Schreibweisen:      = = Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle 25%}

Alle Darstellungsformen sind mathematisch korrekt und bedeuten das Gleiche.
Je nach Aufgabenstellung könnt ihr die Zahlen nach Belieben umformen.

Verstanden?
Dann ordne doch die unten stehenden grünen Zahlen passend den bereits vorgegeben Zahlen zu.


0,4 40%
37,5% 0,375
45% 0,45
1,1 110%
80% 0,8
45% 0,45



<colorize>2. Rechnen mit rationalen Zahlen</colorize>

Für das Rechnen mit rationalen Zahlen gelten die gleichen Regeln wie für das Rechnen mit ganzen Zahlen.


Zur Erinnerung


1. Addition

Gleiche Vorzeichen: Addiere die Summanden und übernimm das gemeinsame Vorzeichen in die Summe.

Verschiedene Vorzeichen: Subtrahiere die kleinere Zahl von der größeren. Übernimm das Vorzeichen der größeren Zahl.




2. Subtraktion

Subtrahierst du eine kleinere Zahl von einer größeren, dann ist dein Ergebnis positiv.

Subtrahierst du eine größere Zahl von einer kleineren, dann ist dein Ergebnis negativ.

Subtrahierst du zwei negative Beträge subtrahieren, dann ist dein Ergebnis negativ.



3. Multiplikation

Multipliziere die beiden Faktoren miteinander.

-> Bei gleichen Vorzeichen ist dein Ergebnis positiv .
-> Bei ungleichen Vorzeichen ist dein Ergebnis negativ .




4. Divison:

Dividiere den Dividend durch den Divisor.

-> Bei gleichen Vorzeichen ist dein Ergebnis positiv .
-> Bei ungleichen Vorzeichen ist dein Ergebnis negativ .



Mit den folgenden Aufgaben kannst du das Gelernte anwenden. Viel Spaß:)


<popup name= Aufgaben>

Aufgabe 1: Berechne und ordne die Lösungen richtig zu.

Welche Zahl muss man zu (−3,4) addieren um 5 zu erhalten? 8,4

Welche Zahl muss man von 2,7 subtrahieren um (−1) zu erhalten?3,7

Welche Zahl muss man zu addieren um 1 zu erhalten?

Welche Zahl muss man zu -2 addieren um (−1) zu erhalten?

Welche Zahl muss man durch - dividieren um zu erhalten?-

Welche Zahl muss man mit 0,5 multiplizieren um - zu erhalten? −1


Aufgabe 2:

Aufgabe 3:

</popup>




Vorlage:Lesepfad Ende