Julius-Echter-Gymnasium/Mathematik/Flächenihnhalt von Parallelogrammen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Main>Franzi gls JEG
Keine Bearbeitungszusammenfassung
Main>Myriam Lang
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
<u></u><div style="padding:50px;background: #F6CEEC;border:0px groove;">


 
<div style="margin:0; margin-right:50px; margin-left:50px; border:10px solid#FFFFFF; padding: 1em 1em 1em 1em; background-color:#FFFFFF; align:left;">
<div style="padding:1px;background:#F6CEEC;border:0px groove;">
 
 




Zeile 12: Zeile 10:
<table border="0" width="600px" cellpadding=5 cellspacing=15>
<table border="0" width="600px" cellpadding=5 cellspacing=15>
<tr><td  width="100px" valign="top">
<tr><td  width="100px" valign="top">
<big>'''<span style="color: #FF0000">Als Erklärung </span>'''</big>
<big>'''<span style="color: #FF0000">Erklärung </span>'''</big>


Ein Parallelogramm hat 4 Seiten. Jeweils 2 Seiten liegen einander '''parallel''' gegenüber und sind gleich lang. -> So kommt es auch zum Namen Parallelogramm!
Ein Parallelogramm hat immer 4 Seiten. Die beiden gegenüberliegenden Seiten sind jeweils <span style="Color: blue">'''parallel'''</span> zueinander und <span style="Color: blue">gleich lang</span>. <br />
-> So kommt es auch zum Namen '''Parallelogramm'''!


Beim Parallelogramm bezeichnet man den Abstand zweier paralleler Seiten als HÖHE.  
Beim Parallelogramm bezeichnet man den Abstand zweier paralleler Seiten als '''Höhe'''.  


-> In jedem Parallelogramm gibt es demnach zwei Höhen.  
-> In jedem Parallelogramm gibt es demnach auch zwei Höhen.  


Für den Flächeninhalt des Parallelogramms gilt: <span style="Color: red">'''A= a . h'''</span>
Für den Flächeninhalt des Parallelogramms gilt die Formel: <span style="Color: red">'''A = a \cdot h'''</span>


</td></tr></table>
</td></tr></table>
</div>
</div>


<br />
<br />
[[Datei:Parallelogram area animated.gif|miniatur|File:Parallelogram area animated.gif|rechts]]
In dieser Animation siehst du, warum man zur Berechnung des <span style="Color: red">Flächeninhaltes eines Parallelogramms</span> nahezu die selbe Formel wie zur Berechnung des <span style="Color: red">Flächeninhaltes eines Rechtecks</span> verwendet. Das senkrecht (entlang der Parallogramm-Höhe) abgeschnittene Dreieck, wird zur anderen Seite hin verschoben, wodurch ein Rechteck entsteht.


In dieser Animation siehst du, warum man zur Berechnung des <span style="Color: red">Flächeninhaltes eines Parallelogramms</span> nahezu die selbe Formel wie zur Berechnung des <span style="Color: red">Flächeninhaltes eines Rechtecks</span> verwendet. Das senkrecht (entlang der Höhe) abgeschnittene Dreieck, wird zur anderen Seite hinverschoben, wodurch ein Rechteck entsteht.
[[Datei:Parallelogram area animated.gif|miniatur|File:Parallelogram area animated.gif]]
<br/>
<br/>
<br/>
<br />
<br />


 
Falls du das Thema noch nicht so richtig verstanden hast, bietet dir der folgende Link die Möglichkeit, das Thema mit Hilfe eines Lernvideos zu verstehen.
 
 
 
 
 
 
 
 
 
 
 
 
 
Falls du dazu Fragen hast oder das Thema noch nicht so richtig verstanden hast, bietet der folgende Link dir die Möglichkeit, das Thema mit Hilfe eines Lernvideos zu verstehen.


https://www.youtube.com/watch?v=w_VXHTE-_pE
https://www.youtube.com/watch?v=w_VXHTE-_pE
Zeile 54: Zeile 45:




1.
<popup name= 1.Aufgabe>


<iframe src="https://learningapps.org/watch?v=psogr1na318" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
<iframe src="https://learningapps.org/watch?app=7235675" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>


2.
</popup>
<br />
 
<popup name= 2.Aufgabe>


<iframe src="https://learningapps.org/watch?v=pmrzqysxn18" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
<iframe src="https://learningapps.org/watch?v=pmrzqysxn18" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>


</popup>
<br />


{{Vorlage:Lesepfad Ende
{{Vorlage:Lesepfad Ende
Zeile 68: Zeile 64:
|Text Copyright=
|Text Copyright=
}}
}}
<div style="padding:1px;background:#F6CEEC;border:0px groove;">

Version vom 23. Januar 2020, 10:42 Uhr


<colorize>Flächeninhalt von Parallelogrammen</colorize>


Erklärung

Ein Parallelogramm hat immer 4 Seiten. Die beiden gegenüberliegenden Seiten sind jeweils parallel zueinander und gleich lang.
-> So kommt es auch zum Namen Parallelogramm!

Beim Parallelogramm bezeichnet man den Abstand zweier paralleler Seiten als Höhe.

-> In jedem Parallelogramm gibt es demnach auch zwei Höhen.

Für den Flächeninhalt des Parallelogramms gilt die Formel: A = a \cdot h



File:Parallelogram area animated.gif

In dieser Animation siehst du, warum man zur Berechnung des Flächeninhaltes eines Parallelogramms nahezu die selbe Formel wie zur Berechnung des Flächeninhaltes eines Rechtecks verwendet. Das senkrecht (entlang der Parallogramm-Höhe) abgeschnittene Dreieck, wird zur anderen Seite hin verschoben, wodurch ein Rechteck entsteht.





Falls du das Thema noch nicht so richtig verstanden hast, bietet dir der folgende Link die Möglichkeit, das Thema mit Hilfe eines Lernvideos zu verstehen.

https://www.youtube.com/watch?v=w_VXHTE-_pE



Teste jetzt dein Wissen über Parallelogramme an folgenden Übungen:


<popup name= 1.Aufgabe>

</popup>

<popup name= 2.Aufgabe>

</popup>

Vorlage:Lesepfad Ende