Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(82 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<br />
 
{{Box
{{Box
|1=Info
|1=Info
|2=In diesem Lernpfadkapitel geht es um die Lagebeziehung zwischen einer Gerade und einer Ebene oder zwischen zwei Ebenen inklusive der Berechnung der Schnittwinkel. Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen könnt.
|2=In diesem Lernpfadkapitel geht es um die Lagebeziehung zwischen einer Gerade und einer Ebene oder zwischen zwei Ebenen inklusive der Berechnung der Schnittwinkel. Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen und anschließend euer Wissen in Übungsaufgaben anwenden könnt.  
 
Anschließend findet ihr eine Beispielaufgabe, in der die Inhalte veranschaulicht werden. Am Ende jedes Abschnittes gibt es Übungsaufgaben mit Tipps und Lösungen, sodass ihr üben und euch selbst überprüfen könnt.




Zeile 23: Zeile 21:
|
|
[[Datei:Lagebeziehung_Gerade_Ebene_schneidend.jpg|rahmenlos|332x332px]]
[[Datei:Lagebeziehung_Gerade_Ebene_schneidend.jpg|rahmenlos|332x332px]]
Die Gerade schneidet die Ebene.
Die Gerade schneidet die Ebene.
|
|
[[Datei:Lagebeziehung_Gerade_Ebene_parallel.jpg|rahmenlos]]
[[Datei:Lagebeziehung_Gerade_Ebene_parallel.jpg|rahmenlos]]
Die Gerade und die Ebene liegen parallel.
Die Gerade und die Ebene liegen parallel.
|
|
[[Datei:Lagebeziehung_Gerade_Ebene_liegtin.jpg|rahmenlos]]
[[Datei:Lagebeziehung_Gerade_Ebene_liegtin.jpg|rahmenlos]]
Die Gerade liegt in der Ebene.
Die Gerade liegt in der Ebene.
}}
}}
Zeile 36: Zeile 37:


===Untersuchung der Lagebeziehung zwischen Gerade und Ebene===
===Untersuchung der Lagebeziehung zwischen Gerade und Ebene===
====Ebene in Parameterform====
{{Box|Aufgabe 1: Lückentext zur Lagebeziehung zwischen Gerade und Ebene|
{{Box|Aufgabe 1: Lückentext zur Lagebeziehung zwischen Gerade und Ebene|
{{LearningApp|width=100%|height=500px|app=pfhf979bk21}}
{{LearningApp|width=100%|height=500px|app=pfhf979bk21}}
Zeile 86: Zeile 88:
|Arbeitsmethode | Farbe={{Farbe|orange}}}}
|Arbeitsmethode | Farbe={{Farbe|orange}}}}


{{Box | Aufgabe 3: Schatten eines Sonnensegels |  
{{Box | Aufgabe 3: Schnittpunktberechnung |
Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind <math>A (9|{-}5|7), B (6|{-}5|7)</math> und <math>C (7|{-}10|11)</math>. Die Terrasse wird modelliert durch die <math>x_1 x_2</math>-Ebene. Die Richtung der Sonnenstrahlen entspricht dem Vektor <math>\vec{s} = \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>. In welchem Bereich hat Frau Meier nun Schatten?
Gegeben sind eine Gerade <math> g: \vec{x}= \left( \begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) </math>und eine Ebene <math>E: \vec{x}= \left( \begin{matrix} 4\\ 1\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 3\\ {-}2 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) </math>.
 
Zeige, dass sich die Gerade und die Ebene schneiden und gib den Schnittpunkt an.
 
{{Lösung versteckt|1= 1. Setze die Geradengleichung mit der Ebenengleichung gleich.
 
2. Stelle ein LGS auf.
 
3. Löse das LGS mit dem Gaußverfahren oder dem Taschenrechner.
 
4. Die Anzahl der Lösungen zeigt dir, wie viele gemeinsamen Punkte die Gerade und die Ebene haben. Daran kannst du die Lagebeziehung erkennen.
 
5. Berechne den Schnittpunkt, indem du den Wert für <math>t</math> in die Geradengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}}
 
{{Lösung versteckt|1= 1. Setze die Geradengleichung mit der Ebenengleichung gleich: <math> \left(\begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) = \left( \begin{matrix} 4\\ 1\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 3\\ {-}2 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) </math>
 
2. Stelle ein LGS auf: <math>\begin{vmatrix} 1+2t=4+r+2s \\ t=1+3r+3s \\ 2-3t=2-2r+s \end{vmatrix} </math>
 
3. Löse das LGS mit dem Gaußverfahren oder dem Taschenrechner: <math> t= 1, r=1, s =-1 </math>
 
4. Die Anzahl der Lösungen zeigt dir, wie viele gemeinsame Punkte die Gerade und die Ebene haben. Da das LGS genau eine Lösung besitzt, haben die Gerade und die Ebene einen gemeinsamen Punkt. Somit schneiden sie sich.
 
5. Berechne den Schnittpunkt, indem du den Wert für <math>t</math> in die Geradengleichung einsetzt:<math> \left(\begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + 1 \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) = \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}}
 
|Arbeitsmethode | Farbe={{Farbe|orange}}}}
 
{{Box | Aufgabe 4: Schatten eines Sonnensegels |  
Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind <math>A (9|{-}5|7), B (6|{-}5|7)</math> und <math>C (7|{-}10|11)</math>. Die Terrasse wird modelliert durch die Ebene <math>E: \vec{x}= \left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right) </math>. Die Richtung der Sonnenstrahlen entspricht dem Vektor <math>\vec{s} = \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>. In welchem Bereich hat Frau Meier nun Schatten?
 
 
Hinweis: Da Frau Meier eine sehr große Terrasse hat, kannst du davon ausgehen, dass der Schatten vollständig innerhalb der Terrasse liegt.
 


{{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1= Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1= Hier siehst du eine Skizze, die die oben beschriebene Situation abbildet. Überlege dir, welche Punkte du für die Aufgabe bestimmen musst. [[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= Hier siehst du eine Skizze, die die oben beschriebene Situation abbildet. Überlege dir, welche Punkte du für die Aufgabe bestimmen musst.  
{{Lösung versteckt|1= Der Schatten liegt auf der <math>x_1 x_2 </math>-Ebene und du weißt, dass jeder Punkt auf dieser Ebene von der Form: <math>P (p_1|p_2|0)</math> ist. Du musst also die Ebenengleichung nicht aufstellen.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
 
[[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= Nachdem ihr die Geraden- und Ebenengleichung gleichgesetzt habt, reicht es, wenn ihr euch die Gleichung für die <math>x_3</math>-Koordinate anschaut.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1=  
{{Lösung versteckt|1=  
'''1. Schritt:''' Mache eine Skizze von der Situation.
'''1. Schritt:''' Mache eine Skizze von der Situation.
[[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]
[[Datei:Aufgabe Sonnensegel Spurpunkte.png|rahmenlos|500x500px]]
'''2. Schritt:''' Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: <math>f\colon \vec{x}=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>,
 
<math>g\colon \vec{x}=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + s \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>,
'''2. Schritt:''' Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: <math>f\colon \vec{x}=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>,
<math>g\colon \vec{x}=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>,
<math>h\colon \vec{x}=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>  
<math>h\colon \vec{x}=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)</math>  


'''3. Schritt:''' Berechne die Schnittpunkte der Geraden mit der <math>x_1 x_2</math>-Ebene. Da du weißt, dass jeder Punkt in dieser Ebene von der Form <math>P (p_1|p_2|0)</math> ist, kannst du den Ortsvektor bilden und diesen mit der Geradengleichung gleichsetzen.
'''3. Schritt:''' Berechne die Schnittpunkte der Geraden mit der Ebene.


Berechnung von <math>A' </math>:
Berechnung von <math>A' </math>:


<math>\left( \begin{matrix} p_1\\ p_2\\ 0 \end{matrix} \right)=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  
Setze die Geraden- und Ebenengleichung gleich:
<math>\left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  


Notiere die Zeilen der Gleichung als Gleichungssystem:
Notiere die Zeilen der Gleichung als Gleichungssystem:
<math>\begin{vmatrix} x_1=9-2r \\ x_2=-5-2r \\ 0=7-10r \end{vmatrix} </math>  
<math>\begin{vmatrix} -13+r=9-2t \\ -7+s=-5-2t \\ 0=7-10t \end{vmatrix} </math>  


Lösen des Gleichungssystems liefert:
Berechne den Parameter <math>t</math>, indem du die 3. Gleichung nach <math>t</math> umformst:
<math> x_1=-\frac{63}{5}, x_2 = -\frac{32}{5}, r= \frac{7}{10} </math>  
<math> t= \frac{7}{10} </math>  


Du erhältst den Punkt <math> A'(-\frac{63}{5} | -\frac{32}{5} | 0)</math>.  
Durch Einsetzen von <math>t</math> in die Geradengleichung erhältst den Punkt <math> A'(-\frac{63}{5} | -\frac{32}{5} | 0)</math>.  


Berechnung von <math>B'</math>:
Berechnung von <math>B'</math>:


<math>\left( \begin{matrix} p_1\\ p_2\\ 0 \end{matrix} \right)=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + s \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  
Setze die Geraden- und Ebenengleichung gleich:
<math>\left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  


Notiere die Zeilen der Gleichung als Gleichungssystem:
Notiere die Zeilen der Gleichung als Gleichungssystem:
<math> \begin{vmatrix} x_1=6-2s \\ x_2=-5-2s \\ 0=7-10s \end{vmatrix} </math>  
<math> \begin{vmatrix} -13+r=6-2t \\ -7+s=-5-2t \\ 0=7-10t \end{vmatrix} </math>  


Lösen des Gleichungssystems liefert:
Löse die 3. Gleichung nach <math>t</math> auf:
<math> x_1=-\frac{42}{5}, x_2 = -\frac{32}{5}, r= \frac{7}{10} </math>  
<math> t= \frac{7}{10} </math>  


Du erhältst den Punkt <math> B'( -\frac{42}{5} | -\frac{32}{5} | 0 )</math>.
Durch Einsetzen von <math>t</math> in die Geradengleichung erhältst den Punkt <math> B'( -\frac{42}{5} | -\frac{32}{5} | 0 )</math>.


Berechnung von <math>C'</math>:
Berechnung von <math>C'</math>:


<math>\left( \begin{matrix} p_1\\ p_2\\ 0 \end{matrix} \right)=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  
<math>\left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) </math>  


Notiere die Zeilen der Gleichung als Gleichungssystem:
Notiere die Zeilen der Gleichung als Gleichungssystem:
<math> \begin{vmatrix} x_1=7-2t \\ x_2=-10-2t \\ 0=11-10t \end{vmatrix} </math>  
<math> \begin{vmatrix} -13+r=7-2t \\ -7+s=-10-2t \\ 0=11-10t \end{vmatrix} </math>  


Lösen des Gleichungssystems liefert:
Löse die 3. Gleichung nach <math>t</math> auf:
<math> x_1=-\frac{77}{5}, x_2 = -\frac{61}{5}, t= \frac{11}{10} </math>  
<math> t= \frac{11}{10} </math>  


Du erhältst den Punkt <math> C' (-\frac{77}{5} | -\frac{61}{5} | 0)</math>.
Durch Einsetzen von <math>t</math> in die Geradengleichung erhältst den Punkt <math> C' (-\frac{77}{5} | -\frac{61}{5} | 0)</math>.


Die Schattenfläche wird also durch das Dreieck mit den Eckpunkten <math> A'(-\frac{63}{5} | -\frac{32}{5} | 0), B'( -\frac{42}{5} | -\frac{32}{5} | 0 )</math> und <math> C' (-\frac{77}{5} | -\frac{61}{5} | 0)</math> begrenzt.
Die Schattenfläche wird also durch das Dreieck mit den Eckpunkten <math> A'(-\frac{63}{5} | -\frac{32}{5} | 0), B'( -\frac{42}{5} | -\frac{32}{5} | 0 )</math> und <math> C' (-\frac{77}{5} | -\frac{61}{5} | 0)</math> begrenzt.
Zeile 142: Zeile 182:
|Arbeitsmethode}}
|Arbeitsmethode}}


{{Box|&#x2B50;Merke: Die Lagebeziehung einer Gerade und einer Ebene mit dem Normalenvektor untersuchen|  
====&#x2B50;Ebene in Koordinatenform====
Bei der Bestimmung der Lagebeziehung zwischen einer Gerade <math>g</math> und einer Ebene <math>E</math> kann dir der Normalenvektor der Ebene helfen.
{{Box|&#x2B50;Merke: Die Lagebeziehung einer Gerade und einer Ebene mit dem Normalenvektor untersuchen|Bei der Bestimmung der Lagebeziehung zwischen einer Gerade <math>g</math> und einer Ebene <math>E</math> kann dir der Normalenvektor der Ebene helfen.
Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in das Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum|Ebenen im Raum]].
{{3Spalten
{{3Spalten
|
|
[[Datei:Lagebeziehung Gerade Ebene parallel Normalenvektor.jpg|rahmenlos]]
[[Datei:Lagebeziehung Gerade Ebene parallel Normalenvektor.jpg|rahmenlos]]
|
 
[[Datei:Lagebeziehung Gerade Ebene liegtin Normalenvektor.jpg|rahmenlos]]|
[[Datei:Lagebeziehung Gerade Ebene schneidend Normalenvektor.jpg|rahmenlos]]
}}
{{3Spalten
|
Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene '''orthogonal''' zueinander sind und Gerade und Ebene '''keinen gemeinsamen Punkt''' besitzen, so sind sie '''parallel''' zueinander.
Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene '''orthogonal''' zueinander sind und Gerade und Ebene '''keinen gemeinsamen Punkt''' besitzen, so sind sie '''parallel''' zueinander.
|
|
[[Datei:Lagebeziehung Gerade Ebene liegtin Normalenvektor.jpg|rahmenlos]]
Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene '''orthogonal''' zueinander sind und Gerade und Ebene '''unendlich viele gemeinsame Punkte''' besitzen, so '''liegt''' die Gerade '''in''' der Ebene.
Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene '''orthogonal''' zueinander sind und Gerade und Ebene '''unendlich viele gemeinsame Punkte''' besitzen, so '''liegt''' die Gerade '''in''' der Ebene.
|
|
[[Datei:Lagebeziehung Gerade Ebene schneidend Normalenvektor.jpg|rahmenlos]]
Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene '''nicht orthogonal''' zueinander sind, dann '''schneiden''' sich die Gerade und die Ebene und es kann ein '''Schnittpunkt''' bestimmt werden.
Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene '''nicht orthogonal''' zueinander sind, dann '''schneiden''' sich die Gerade und die Ebene und es kann ein '''Schnittpunkt''' bestimmt werden.
}}
}}
Zeile 168: Zeile 209:




{{Box |&#x2B50; Beispiel: Untersuchung der Lagebeziehung einer Gerade und einer Ebene in Koordinatenform |  
{{Box |&#x2B50; Aufgabe 5: Untersuchung der Lagebeziehung einer Gerade und einer Ebene in Koordinatenform |  
 
a) Gegeben sind eine Ebene <math>E\colon 2x_1 + x_2 - x_3 = 5 </math> und eine Gerade <math>g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) </math>. Bestimme die Lagebeziehung von Gerade und Ebene.
 
 
 
'''1. Schritt:''' Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.
 
{{Lösung versteckt|1=Verwende des Skalarprodukt.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Wenn das Skalarprodukt zweier Vektoren <math>0</math> ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich <math>0</math> ist, dann sind sie nicht orthogonal.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=<math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 2\\ 1\\ {-}1 \end{matrix} \right) \ast \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) = 2 \cdot (-3) + 1 \cdot 5 -1 \cdot (-1) = 0</math>. Da das Skalarprodukt <math> 0 </math> ergibt, gilt <math>\vec{n} \perp \vec{u}</math>.|2=Lösung anzeigen|3=Lösung verbergen}}
 
 
'''2. Schritt:''' Prüfe durch eine Punktprobe, ob der Aufpunkt der Gerade in der Ebene liegt.
 


Gegeben sind eine Ebene <math>E\colon 2x_1 + x_2 - x_3 = 5 </math> und eine Gerade <math>g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) </math>. Bestimme die Lagebeziehung von Gerade und Ebene.
{{Lösung versteckt|1=<math>2 \cdot 3 -2 =4 \neq 5</math>


<math>\Rightarrow</math> Der Aufpunkt liegt nicht in der Ebene. Daher verlaufen die Gerade <math>g </math> und die Ebene <math>E</math> parallel zueinander.|2=Lösung anzeigen|3=Lösung verbergen}}




'''1. Schritt:''' Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt: <math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 2\\ 1\\ {-}1 \end{matrix} \right) \ast \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) = 2 \cdot (-3) + 1 \cdot 5 -1 \cdot (-1) = 0</math>. Da das Skalarprodukt <math> 0 </math> ergibt, gilt <math>\vec{n} \perp \vec{u}</math>.
b) Gegeben sind eine Ebene <math>E\colon x_1 + 2x_2 + 3x_3 = 5 </math> und eine Gerade <math>g\colon \vec{x}=\left( \begin{matrix} 4\\ {-}7\\ 5 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 4\\ {-}3 \end{matrix} \right) </math>. Bestimme die Lagebeziehung von Gerade und Ebene.


'''1. Schritt:''' Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.


{{Lösung versteckt|1=Verwende des Skalarprodukt.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Wenn das Skalarprodukt zweier Vektoren <math>0</math> ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich <math>0</math> ist, dann sind sie nicht orthogonal.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=<math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) \ast \left( \begin{matrix} 4\\ {-}7\\ 5 \end{matrix} \right) = 1 \cdot 4 + 2 \cdot (-7) +3 \cdot 5 = 0</math>. Da das Skalarprodukt <math> 0 </math> ergibt, gilt <math>\vec{n} \perp \vec{u}</math>.|2=Lösung anzeigen|3=Lösung verbergen}}


'''2. Schritt:''' Prüfe durch eine Punktprobe, ob der Aufpunkt der Gerade in der Ebene liegt: <math>2 \cdot 3 -2 =4 \neq 5</math>


<math>\Rightarrow</math> Der Aufpunkt liegt nicht in der Ebene. Daher verlaufen die Gerade <math>g </math> und die Ebene <math>E</math> parallel zueinander.
'''2. Schritt:''' Prüfe durch eine Punktprobe, ob der Aufpunkt der Gerade in der Ebene liegt.




| Hervorhebung1}}
{{Lösung versteckt|1=<math>4+2 \cdot (-7) +3 \cdot 5 =5</math>
 
<math>\Rightarrow</math> Der Aufpunkt liegt in der Ebene. Daher liegt die Gerade <math>g </math> in der Ebene <math>E</math>.|2=Lösung anzeigen|3=Lösung verbergen}}
 
c) Gegeben sind eine Ebene <math>E\colon x_1 - 2x_2 + x_3 = -3 </math> und eine Gerade <math>g\colon \vec{x}=\left( \begin{matrix} 4\\ 3\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ \frac{3}{2}\\ 1 \end{matrix} \right) </math>. Bestimme die Lagebeziehung von Gerade und Ebene.
 
'''1. Schritt:''' Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.
 
{{Lösung versteckt|1=Verwende des Skalarprodukt.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Wenn das Skalarprodukt zweier Vektoren <math>0</math> ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich <math>0</math> ist, dann sind sie nicht orthogonal.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=<math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) \ast \left( \begin{matrix} -2\\\frac{3}{2} \\1 \end{matrix} \right) = 1\cdot -2-2 \cdot \frac{3}{2} + 1 \cdot 1= -4</math>. Da das Skalarprodukt <math> -4 \neq 0 </math> ergibt, sind <math>\vec{n}</math> und <math> \vec{u}</math> nicht orthogonal zueinander. Somit schneiden sich die Gerade und die Ebene.|2=Lösung anzeigen|3=Lösung verbergen}}
 
 
'''2. Schritt:''' Berechne des Schnittpunktes.
{{Lösung versteckt|1=Setze die Koordinaten der Gerade <math>g</math> in die Ebenengleichung von <math>E</math> ein und forme nach dem Parameter um.|2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1= Die einzelnen Koordinaten der Gerade <math>g</math> sind: <math>x_1=4-2r, x_2=3+\frac{3}{2}r, x_3=2+r</math>.
 
Setze diese Koordinaten in die Ebenengleichung von <math>E</math> ein:
<math>4-2r-2\cdot(3+\frac{3}{2}r)+2+r=-3</math>
 
Forme nach dem Parameter <math>r</math> um:
<math>4-2r-6-3r+2+r=-3 \Leftrightarrow r=\frac{3}{4}</math>
 
Setze den Parameter in die Geradengleichung ein, um den Schnittpunkt zu berechnen:
 
<math>\left( \begin{matrix} 4\\ 3\\ 2 \end{matrix} \right) + \frac{3}{4} \cdot \left( \begin{matrix} -2\\ \frac{3}{2}\\ 1 \end{matrix} \right)=\left(\begin{matrix} \frac{10}{4}\\ \frac{33}{8}\\ \frac{11}{4} \end{matrix} \right)</math>.
Die Gerade <math>g</math> und die Ebene <math>E</math> schneiden sich im Schnittpunkt <math>S(\frac{10}{4}|\frac{33}{8}|\frac{11}{4})</math>. |2=Lösung anzeigen|3=Lösung verbergen}}
 
 
| Arbeitsmethode | Farbe={{Farbe|orange}}}}


{{Box|&#x2B50; Aufgabe 4: Bestimme den Parameter |
{{Box|&#x2B50; Aufgabe 6: Bestimme den Parameter |
Gegeben ist eine Ebene <math>E\colon -2x_1 + 3x_2 - x_3 = 3</math>.
Gegeben ist eine Ebene <math>E\colon -2x_1 + 3x_2 - x_3 = 3</math>.
Bestimme <math>l</math> und <math>m</math> in den folgenden Geraden so, dass die jeweils angegebene Lagebeziehung erfüllt ist.
Bestimme <math>l</math> und <math>m</math> in den folgenden Geraden so, dass die jeweils angegebene Lagebeziehung erfüllt ist.
Zeile 198: Zeile 286:


{{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1= Damit die Gerade <math>g</math> in der Ebene <math>E</math> liegt, müssen der Richtungsvektor von <math>g</math> und der Normalenvektor von <math>E</math> orthogonal zueinander sein. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1= Wenn die Gerade <math>g</math> in der Ebene <math>E</math> liegt, liegt jeder Punkt auf der Gerade <math>g</math> auch in der Ebene <math>E</math>. Prüfe mit der Punktprobe, ob der Aufpunkt von <math>g</math> in der Ebene <math>E</math> liegt.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= Wenn die Gerade <math>g</math> in der Ebene <math>E</math> liegt, liegt jeder Punkt auf der Gerade <math>g</math> auch in der Ebene <math>E</math>. |2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= Prüfe mit der Punktprobe, ob der Aufpunkt von <math>g</math> in der Ebene <math>E</math> liegt.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1= Prüfe mit der Punktprobe, ob der Aufpunkt von <math>g</math> in der Ebene <math>E</math> liegt.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1= '''Finde zuerst m:''' <math> \vec{u} \ast \vec{n} = \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 3m - \frac{48}{5}</math>.  
{{Lösung versteckt|1= '''Finde zuerst m:''' <math> \vec{u} \ast \vec{n} = \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 3m - \frac{48}{5}</math>.  
Zeile 213: Zeile 301:
|Arbeitsmethode}}
|Arbeitsmethode}}


{{Box|&#x2B50; Aufgabe 5: Beamer |  
{{Box|&#x2B50; Aufgabe 7: Flugzeug |  
Luca hält einen Vortrag vor seiner Klasse. Mit einem Laserpointer möchte er auf einer Karte an der Wand etwas zeigen. Die Wand des Klassenraums wird durch die Ebene <math>E\colon x_2 + 3x_3 = 2</math> dargestellt. Der Strahl des Laserpointers wird durch die Gerade <math>j\colon \vec{x} = \left( \begin{matrix} {-}5\\ 1 \\ \frac{3}{2} \end{matrix} \right) + t \cdot \left( \begin{matrix} 1\\ 2\\ \frac{1}{2} \end{matrix} \right)</math> modelliert.
Ein Flugzeug fliegt auf eine Nebelwand zu. Seine Flugbahn wird durch die Gerade <math>j\colon \vec{x} = \left( \begin{matrix} 10\\ 23 \\ 10 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}5\\ 0 \end{matrix} \right)</math> beschrieben, wobei <math> t</math> die Zeit in Minuten nach dem Start bezeichnet. Das Flugzeug befindet sich also im Moment am Punkt <math> P(10/23/10) </math>. Du kannst davon ausgehen, dass es mit konstanter Geschwindigkeit fliegt. Die Ebene <math> E: 2x_1+x_2=-2 </math> beschreibt die Nebelwand.
Berechne ohne Taschenrechner, wo der Strahl aus Lucas Laserpointer auf die Karte an der Wand trifft.
 
Versuche die folgenden Aufgaben ohne Taschenrechner zu lösen.
 
a) Begründe, dass das Flugzeug die Nebelwand trifft.
{{Lösung versteckt|1=Verwende das Skalarprodukt. |2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1= <math>\vec{n} \ast \vec{u} = \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right) \ast \left( \begin{matrix} -2\\ {-}5\\ 0 \end{matrix} \right) = 2 \cdot (-2) + 1 \cdot (-5) +0 \cdot 0 = -9</math>. Da das Skalarprodukt <math> -9 \neq 0 </math> ergibt, sind der Normalenvektor der Ebene <math>E</math> und der Richtungsvektor der Gerade <math>j</math> nicht orthogonal zueinander. Daraus können wir schließen, dass sich Gerade und Ebene schneiden. Das Flugzeug trifft also auf die Nebelwand.|2=Lösung anzeigen|3=Lösung verbergen}}
 
b) Wo trifft das Flugzeug auf die Nebelwand und wie viele Minuten dauert es noch, bis das Flugzeug die Nebelwand erreicht?
 
{{Lösung versteckt|1= Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1= Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.|2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1= Setze die einzelnen Koordinaten der Gerade in die Ebenengleichung ein: <math>1 + 2t + 3(\frac{3}{2} + \frac{1}{2}t) = 2 \Leftrightarrow t=-1</math>
{{Lösung versteckt|1= Setze die einzelnen Koordinaten der Gerade in die Ebenengleichung ein und löse nach dem Parameter <math>t</math> auf: <math>2 \cdot (10-2t)+23-5t= -2 \Leftrightarrow 20-4t+23-5t =-2 \Leftrightarrow -9t=-45\Leftrightarrow t=5</math>
Berechne den Schnittpunkt S, indem du <math>t</math> in die Geradengleichung einsetzt. Du erhältst den Ortsvektor zum Schnittpunkt und kannst den Schnittpunkt dann ablesen: <math>\left( \begin{matrix} -5\\ 1\\ \frac{3}{2} \end{matrix} \right) + (-1) \cdot \left( \begin{matrix} 1\\ 2\\ \frac{1}{2} \end{matrix} \right) = \left( \begin{matrix} 6\\ -1\\ 1 \end{matrix} \right)</math>. Damit ergibt sich der Schnittpunkt <math> S(6|-1|1)</math>. |2=Lösung anzeigen|3=Lösung verbergen}}
 
Da <math>t</math> die Zeit in Minuten angibt, erreicht das Flugzeug den Schnittpunkt in 5 Minuten.
 
Berechne nun den Schnittpunkt <math>S</math>, indem du <math>t</math> in die Geradengleichung einsetzt. Du erhältst den Ortsvektor zum Schnittpunkt und kannst den Schnittpunkt dann ablesen: <math>\left( \begin{matrix} 10\\ 23 \\10 \end{matrix} \right) + 5 \cdot \left( \begin{matrix} -2\\ {-}5\\ 0 \end{matrix} \right)</math><math> = \left( \begin{matrix} 0\\{-}2\\ 10 \end{matrix}\right)=\left( \begin{matrix} 0\\-2\\ 10 \end{matrix} \right)</math>. Damit ergibt sich der Schnittpunkt <math> S(0|-2|10)</math>.
 
Das Flugzeug trifft die Nebelwand in 5 Minuten im Punkt <math> S(0|-2|10)</math>. |2=Lösung anzeigen|3=Lösung verbergen}}
  | Arbeitsmethode | Farbe={{Farbe|orange}}}}  
  | Arbeitsmethode | Farbe={{Farbe|orange}}}}  


Zeile 224: Zeile 325:
===&#x2B50;Berechnung des Winkels zwischen Gerade und Ebene===
===&#x2B50;Berechnung des Winkels zwischen Gerade und Ebene===


{{Box | Merke: Berechnung des Winkels zwischen Gerade und Ebene |  
{{Box | &#x2B50; Merke: Berechnung des Winkels zwischen Gerade und Ebene |  
 
Wenn eine Gerade <math>g</math> eine Ebene <math>E</math> schneidet, kannst du nicht nur den Schnittpunkt berechnen, sondern auch den Schnittwinkel. Dafür benötigen wir den Normalenvektor. Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in das Kapitel ''Ebenen im Raum'' ([[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum|Ebenen im Raum]]). | Merksatz}}


Wenn eine Gerade <math>g</math> eine Ebene <math>E</math> schneidet, kannst du nicht nur den Schnittpunkt berechnen, sondern auch den Schnittwinkel. Dafür benötigen wir den Normalenvektor. Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum]] | Merksatz}}
{{Box | &#x2B50; Merksatz: Winkel berechnen zwischen Gerade und Ebene |


{{Box | Merksatz: Winkel berechnen zwischen Gerade und Ebene |
[[Datei:Abbildung Winkel zwischen Gerade und Ebene .jpg| rechts | mini | Winkel zwischen Gerade und Ebene]]


[[Datei:Abbildung Winkel zwischen Gerade und Ebene .jpg| rechts | mini |Abbildung: Winkel zwischen Gerade und Ebene]]
Sei <math>E</math> eine Ebene mit dem Normalenvektor <math>\vec{n}</math> und <math>g</math> eine Gerade mit dem Richtungsvektor <math>\vec{u}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>g</math> kann mit folgender Formel berechnet werden: <math>\sin(\alpha)=\frac{|\vec{n} \ast \vec{u}|}{|\vec{n}| \cdot |\vec{u}|}</math>.  
Sei <math>E</math> eine Ebene mit dem Normalenvektor <math>\vec{n}</math> und <math>g</math> eine Gerade mit dem Richtungsvektor <math>\vec{u}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>g</math> kann mit folgender Formel berechnet werden: <math>\sin(\alpha)=\frac{|\vec{n} \ast \vec{u}|}{|\vec{n}| \cdot |\vec{u}|}</math>.  


Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von Gerade und Ebene eingeschlossen werden. Dein berechneter Winkel <math>\alpha</math> darf also nur zwischen <math>0^{\circ}</math> und <math>90^{\circ}</math> liegen. Ist dein berechneter Winkel <math>\alpha > 90^{\circ}</math>, so musst du <math>180^{\circ} - \alpha</math> berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen.
Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von Gerade und Ebene eingeschlossen werden. Mit der obigen Formel erhält man deshalb für <math>\alpha</math> immer Werte zwischen <math>0^{\circ}</math> und <math>90^{\circ}</math>.


Wenn du wissen möchtest, warum du nicht - wie beim Winkel zwischen zwei Geraden - den Kosinus benutzt, kannst du das hier nachlesen:  
Wenn du wissen möchtest, warum du nicht - wie beim Winkel zwischen zwei Geraden - den Kosinus benutzt, kannst du das hier nachlesen:  
Zeile 240: Zeile 341:
{{Lösung versteckt|1=
{{Lösung versteckt|1=


[[Datei:Abbildung- Winkel zwischen Gerade und Ebene, Zusammenhang zum Normalenvektor.jpg | rechts | mini | Abbildung: Winkel zwischen Gerade und Ebene]]
[[Datei:Abbildung- Winkel zwischen Gerade und Ebene, Zusammenhang zum Normalenvektor.jpg | rechts | mini | Winkel zwischen Gerade und Ebene]]


Der Normalenvektor <math>\vec{n}</math> einer Ebene steht in einem <math>90^{\circ} </math> Winkel zur Ebene <math>E</math>.  
Der Normalenvektor <math>\vec{n}</math> einer Ebene steht in einem <math>90^{\circ} </math> Winkel zur Ebene <math>E</math>.  
Zeile 248: Zeile 349:
  | Merksatz}}  
  | Merksatz}}  


{{Box | &#x2B50; Aufgabe 8: Berechnung des Winkels zwischen Gerade und Ebene |
Gegeben sind die Gerade <math>g\colon \vec{x}=\left( \begin{matrix} {-}1\\ 3\\ 6 \end{matrix} \right) + r \cdot \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) </math> und die Ebene <math>E\colon 2x_1 + x_2 + 4 x_3 = {-}27</math>. Bestimme den Winkel, unter dem sich die Gerade <math>g</math> und die Ebene <math>E</math> schneiden.
{{Lösung versteckt|1= Nutze zur Berechnung des Winkels die Formel aus dem Merksatz. Notiere dafür den Richtungsvektor der Gerade und den Normalenvektor der Ebene.


{{Box | Beispiel: Berechnung des Winkels zwischen Gerade und Ebene |
Wenn du beide in die Formel eingesetzt hast, benötigst du den <math>\sin^{-1}</math>, um den Winkel ausrechnen zu können.


Gegeben sind die Gerade <math>g\colon \vec{x}=\left( \begin{matrix} {-}1\\ 3\\ 6 \end{matrix} \right) + r \cdot \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) </math> und die Ebene <math>E\colon 2x_1 + x_2 + 4 x_3 = {-}27</math>. Bestimme den Winkel, unter dem sich die Gerade <math>g</math> und die Ebene <math>E</math> schneiden.
|2=Tipp anzeigen|3=Tipp verbergen}}


'''1. Schritt''': Notiere den Richtungvektor <math>\vec{u}</math> der Gerade und den Normalenvektor <math>\vec{n}</math> der Ebene.
{{Lösung versteckt|1= '''1. Schritt''': Notiere den Richtungvektor <math>\vec{u}</math> der Gerade und den Normalenvektor <math>\vec{n}</math> der Ebene.


<math>\vec{u}= \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right)</math> und <math>\vec{n}= \left( \begin{matrix} 2\\ 1\\ 4 \end{matrix} \right)</math>
<math>\vec{u}= \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right)</math> und <math>\vec{n}= \left( \begin{matrix} 2\\ 1\\ 4 \end{matrix} \right)</math>


'''2. Schritt''': Setze die Vektoren in die Formel <math>\sin(\alpha)=\frac{ \vec{n} \ast \vec{u}}{|\vec{n}| \cdot |\vec{u}|}</math> ein.  
'''2. Schritt''': Setze die Vektoren in die Formel <math>\sin(\alpha)=\frac{ |\vec{n} \ast \vec{u}|}{|\vec{n}| \cdot |\vec{u}|}</math> ein.  
<math>\sin(\alpha)=\frac{ \left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \ast \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{60} \cdot \sqrt{21}} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{1260}}</math>  
<math>\sin(\alpha)=\frac{ \left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \ast \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{60} \cdot \sqrt{21}} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{1260}}</math>  


'''3. Schritt''': Forme die Gleichung um.
'''3. Schritt''': Forme die Gleichung um.


<math>\alpha = sin^{-1}(\frac{18}{\sqrt{1260}}) \Leftrightarrow \alpha \approx 28{,}45^{\circ}</math>
<math>\alpha = \sin^{-1}(\frac{18}{\sqrt{1260}}) \Leftrightarrow \alpha \approx 28{,}45^{\circ}</math>
 
Der Schnittwinkel beträgt also <math>28{,}45^{\circ}</math>.
 
|2=Lösung anzeigen|3=Lösung verbergen}}


Der Winkel beträgt also <math>28{,}45^{\circ}</math>.
| Arbeitsmethode | Farbe={{Farbe|orange}} }}


| Hervorhebung1}}
{{Box | &#x2B50; Aufgabe 9: Trinkpäckchen |  


{{Box | Aufgabe 6: Trinkpäckchen |  
[[Datei:Trinkpäckchen einfach.jpg|mini|Trinkpäckchen]]


[[Datei:Trinkpäckchen einfach.jpg|mini|Abbildung Trinkpäckchen]]
Eine Schulklasse nimmt auf ihrem Wandertag Trinkpäckchen mit. Jedes Trinkpäckchen hat die Form eines Quaders (siehe Abbildung). Die Seite, auf der sich das Loch für den Strohhalm befindet, kann durch die Ebene <math>E\colon x_1=5</math> beschrieben werden.
Einige Kinder ärgern sich, dass sie mit dem Strohhalm nicht gut in die Ecken kommen. Sie wollen den Winkel berechnen, unter dem sie den Strohhalm in das Trinkpäckchen stecken müssen, um an den Saft in der gegenüberliegenden Ecke zu kommen.


Eine Schulklasse nimmt auf ihrem Wandertag viele Trinkpäckchen mit. Einige Kinder ärgern sich, dass sie mit dem Strohhalm nicht gut in die letzte Ecke kommen. Berechne den Winkel, in dem die Kinder den Strohhalm halten müssen, um auch an den Saft in der letzten Ecke zu kommen.
Wenn der Strohhalm so in das Trinkpäckchen gesteckt wird, das er in der gegenüber liegenden Ecke anstößt, kann er durch die Gerade <math>g</math> veranschaulicht werden: <math>g\colon \vec{x} = \begin{pmatrix} 5\\ 2\\ 11 \end{pmatrix} + t \cdot \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}</math>.
Jedes Trinkpäckchen hat die Form eines Quaders (siehe Abbildung). Die Seite, auf der sich das Loch für den Strohhalm befindet, kann durch die Ebene <math>F\colon x_1=5</math> beschrieben werden.


Wenn der Strohhalm so in das Trinkpäckchen gesteckt wird, das er in der hintersten Ecke anstößt, kann er durch die Gerade <math>g</math> veranschaulicht werden: <math>g\colon \vec{x} = \begin{pmatrix} 5\\ 2\\ 11 \end{pmatrix} + t \cdot \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}</math>.
Kannst du den Kindern helfen, den Winkel zu berechnen, unter dem der Strohhalm in das Trinkpäckchen gesteckt werden muss, um die gegenüberliegende Ecke zu erreichen?
   
   
{{Lösung versteckt|1= Vielleicht hilft dir die Skizze.|2=Tipp anzeigen|3=Tipp verbergen}}
{{Lösung versteckt|1= Überlege, wie dir der obige Merksatz helfen kann.|2=Tipp anzeigen|3=Tipp verbergen}}


{{Lösung versteckt|1= Gesucht wird der Winkel zwischen der Gerade <math>g</math> und der Ebene <math>F</math>. Der Richtungsvektor der Gerade ist <math>\vec{u} = \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}</math>. Der Normalenvektor der Ebene kann abgelesen werden: <math>\vec{n} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}</math>.
{{Lösung versteckt|1= Gesucht wird der Winkel zwischen der Gerade <math>g</math> und der Ebene <math>E</math>. Der Richtungsvektor der Gerade ist <math>\vec{u} = \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}</math>. Der Normalenvektor der Ebene kann abgelesen werden: <math>\vec{n} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}</math>.


Einsetzen der Vektoren in die Formel liefert:  
Einsetzen der Vektoren in die Formel liefert:  
Zeile 287: Zeile 397:
Mithilfe des Taschenrechners kann das Ergebnis berechnet werden:
Mithilfe des Taschenrechners kann das Ergebnis berechnet werden:


<math>\alpha = sin^{-1}(\frac{1}{\sqrt{182}}) \Leftrightarrow \alpha \approx 21{,}75^{\circ}</math>
<math>\alpha = \sin^{-1}(\frac{1}{\sqrt{182}}) \Leftrightarrow \alpha \approx 21{,}75^{\circ}</math>


Die Kinder sollten den Strohhalm also in einem Winkel von ca. <math>21{,}75^{\circ}</math> in das Trinkpäckchen stecken, um an den Saft in der letzten Ecke zu kommen.
Die Kinder sollten den Strohhalm also in einem Winkel von ca. <math>21{,}75^{\circ}</math> in das Trinkpäckchen stecken, um an den Saft in der gegenüberliegenden Ecke zu kommen.


|2=Lösung anzeigen|3=Lösung verbergen}}
|2=Lösung anzeigen|3=Lösung verbergen}}
Zeile 296: Zeile 406:
   
   


{{Box | Aufgabe 7: Gerade gesucht |
{{Box | &#x2B50; Aufgabe 10: Gerade gesucht |
 
Bisher wurde mit der Formel zur Winkelberechnung nur der Winkel berechnet. Die Formel kann jedoch auch genutzt werden, um bei einem vorgegebenen Winkel die Lage der Gerade oder Ebene zu bestimmen.


Eine Gerade <math>g</math> soll die <math>x_1</math>-<math>x_2</math>-Ebene in einem Winkel von <math>45^{\circ}</math> schneiden. Über die Gerade <math>g</math> ist nur bekannt, dass sie im Punkt <math>P (1|2|3)</math> beginnt und sie in Richtung des Vektors <math>\vec{x}=\begin{pmatrix} 3\\ 6\\ z \end{pmatrix}</math> verläuft. Stelle die Gerade <math>g</math> auf.
Eine Gerade <math>g</math> soll die <math>x_1x_2</math>-Ebene in einem Winkel von <math>45^{\circ}</math> schneiden. Über die Gerade <math>g</math> ist nur bekannt, dass sie durch den Punkt <math>P (1|2|3)</math> und in Richtung des Vektors <math>\vec{x}=\begin{pmatrix} 3\\ 6\\ z \end{pmatrix}, z > 0 </math> verläuft. Stelle die Gleichung der Gerade <math>g</math> auf, indem du den Parameter <math>z</math> bestimmst.


{{Lösung versteckt|1=Notiere dir alle Informationen aus dem Text. Was weißt du über die Berechnung des Winkels zwischen einer Gerade und einer Ebene?|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1=Notiere dir alle Informationen aus dem Text. Was weißt du über die Berechnung des Winkels zwischen einer Gerade und einer Ebene?|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}


{{Lösung versteckt|1=Der Normalenvektor der <math>x_1</math>-<math>x_2</math> -Ebene verläuft nur in <math>x_3</math>-Richtung.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1=Der Normalenvektor der <math>x_1x_2</math>-Ebene verläuft nur in <math>x_3</math>-Richtung.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}


{{Lösung versteckt|1=Um Gleichungen mit einer Unbekannten zu lösen, kannst du die nSolve-Funktion deines Taschenrechners nutzen.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1=Um Gleichungen mit einer Unbekannten zu lösen, kannst du die nSolve-Funktion deines Taschenrechners nutzen.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}


{{Lösung versteckt|1=Bisher wurde mit der Formel zur Winkelberechnung nur der Winkel berechnet. Die Formel kann jedoch auch genutzt werden, um bei einem vorgegebenen Winkel die Lage der Gerade oder Ebene zu bestimmen.
{{Lösung versteckt|1= Bestimme zuerst den Normalenvektor der Ebene. Da es sich um die <math>x_1x_2</math> -Ebene handelt, lautet der Normalenvektor <math>\vec{n}=\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}</math>.  
 
Bestimme dafür zuerst den Normalenvektor der Ebene. Da es sich um die <math>x_1</math>-<math>x_2</math> -Ebene handelt, lautet der Normalenvektor <math>\vec{n}=\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}</math>.  


Nun können der Normalenvektor der Ebene, der Richtungsvektor der Gerade und der vorgegebene Winkel in die Formel eingesetzt werden: <math>\sin(45)=\frac{ \left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 3\\ 6\\ z \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 3\\ 6\\ z \end{pmatrix} \right|} \Leftrightarrow \sin(45)=\frac{z}{\sqrt{1} \cdot \sqrt{9+36 + z^{2}}} \Leftrightarrow \sin(45)=\frac{z}{\sqrt{45+z^{2}}}</math>
Nun können der Normalenvektor der Ebene, der Richtungsvektor der Gerade und der vorgegebene Winkel in die Formel eingesetzt werden: <math>\sin(45^{\circ})=\frac{ \left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 3\\ 6\\ z \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 3\\ 6\\ z \end{pmatrix} \right|} \Leftrightarrow \sin(45^{\circ})=\frac{|z|}{\sqrt{1} \cdot \sqrt{9+36 + z^{2}}} \Leftrightarrow \sin(45^{\circ})=\frac{|z|}{\sqrt{45+z^{2}}}</math>


Löst man die Gleichung mithilfe des Taschenrechners, erhält man das Ergebnis: <math>z=3 \sqrt{5} \approx 6{,}71</math>.  
Löst man die Gleichung mithilfe des Taschenrechners, erhält man das Ergebnis: <math>z=3 \sqrt{5} \approx 6{,}71</math>.  
Zeile 316: Zeile 426:
Somit kann im letzten Schritt die Gerade <math>g</math> aufgestellt werden. Man erhält <math>g\colon \vec{x} = \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 3\\ 6\\ {3 \sqrt{5}} \end{matrix} \right)</math>. |2=Lösung anzeigen|3=Lösung verbergen}}
Somit kann im letzten Schritt die Gerade <math>g</math> aufgestellt werden. Man erhält <math>g\colon \vec{x} = \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 3\\ 6\\ {3 \sqrt{5}} \end{matrix} \right)</math>. |2=Lösung anzeigen|3=Lösung verbergen}}


| Arbeitsmethode}}
| Arbeitsmethode | Farbe={{Farbe|grün|dunkel}} }}




Zeile 326: Zeile 436:
|
|
[[Datei:Lagebeziehung zweier Ebenen (schneidend).png|rahmenlos]]
[[Datei:Lagebeziehung zweier Ebenen (schneidend).png|rahmenlos]]
Die Ebenen schneiden sich in einer Schnittgeraden.
|
|
[[Datei:Lagebeziehung zweier Ebenen (parallel).png|rahmenlos]]
[[Datei:Lagebeziehung zweier Ebenen (parallel).png|rahmenlos]]
Die Ebenen sind parallel.
|
|
[[Datei:Lagebeziehung zweier Ebenen (identisch).png|rahmenlos]]
[[Datei:Lagebeziehung zweier Ebenen (identisch).png|rahmenlos]]
}}


{{3Spalten
|
Die Ebenen schneiden sich in einer Schnittgeraden.
|
Die Ebenen sind parallel.
|
Die Ebenen sind identisch.
Die Ebenen sind identisch.
}}
}}
|Merksatz}}
|Merksatz}}


{{Box|Aufgabe 8: Lückentext zur Lagebeziehung zwischen Ebene und Ebene|
===Untersuchung der Lagebeziehung von zwei Ebenen===
 
====Beide Ebenengleichungen in Parameterform====
{{Box|Aufgabe 11: Lückentext zur Lagebeziehung zwischen Ebene und Ebene|


{{LearningApp|width=100%|height=500px|app=ptpaywm2521}}
{{LearningApp|width=100%|height=500px|app=ptpaywm2521}}


|Arbeitsmethode| Farbe={{Farbe|orange}}}}
|Arbeitsmethode| Farbe={{Farbe|orange}}}}<br />{{Box|Merke: Lagebeziehung von zwei Ebenen in Parameterform untersuchen. |
 
===Untersuchung der Lagebeziehung von zwei Ebenen===
====Beide Ebenengleichungen in Parameterform====
{{Box|Merke: Lagebeziehung von zwei Ebenen in Parameterform untersuchen. |
[[Datei:Vorgehen bei der Untersuchung der Lagebeziehung zweier Ebenen in Parameterform.jpg|zentriert|rahmenlos|600x600px]]
[[Datei:Vorgehen bei der Untersuchung der Lagebeziehung zweier Ebenen in Parameterform.jpg|zentriert|rahmenlos|600x600px]]
|Merksatz}}
|Merksatz}}




{{Box | Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Parameterform |  
{{Box |Aufgabe 12: Untersuchung der Lagebeziehung von zwei Ebenen in Parameterform |  


'''a)'''
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 4\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) + t \cdot \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right) </math> und eine Ebene <math>F\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ {-}2 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 5\\ 4\\ {-}3 \end{matrix} \right)</math>.  
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 4\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) + t \cdot \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right) </math> und eine Ebene <math>F\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ {-}2 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 5\\ 4\\ {-}3 \end{matrix} \right)</math>.  
Untersuche die Lagebeziehung der beiden Ebenen.
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.
 
'''1. Schritt:''' Setze die beiden Ebenengleichungen gleich.


{{Lösung versteckt|1=<math>\left( \begin{matrix} 1\\ 4\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) + t \cdot \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right)= \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ {-}2 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 5\\ 4\\ {-}3 \end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}}




'''1. Schritt:''' Setze die beiden Ebenengleichungen gleich.
'''2. Schritt:''' Stelle das zugehörige lineare Gleichungssystem auf.  
 
<math>\left( \begin{matrix} 1\\ 4\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) + t \cdot \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right)= \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ {-}2 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 5\\ 4\\ {-}3 \end{matrix} \right)</math>
{{Lösung versteckt|1=<math>\begin{vmatrix} 1+s+3t=1+2r+5u \\ 4-2s+t=2+3r+4u \\ s-t=3-2r-3u \end{vmatrix} \Leftrightarrow \begin{vmatrix} s+3t-2r+5u=0 \\ {-}2s+t-3r-4u=-2 \\ s-t+2r+3u=3 \end{vmatrix}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
 
'''3. Schritt:''' Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:
 
{{2Spalten
|
Mithilfe des Gaußverfahrens:
 
{{Lösung versteckt|1=<math>\begin{vmatrix} s+3t-2r-5u=0 \\ 7t-7r-14u=-2 \\ 0=-13\end{vmatrix}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
|
Mithilfe des Taschenrechners:
 
{{Lösung versteckt|1=<math>linSolve\begin{pmatrix}\begin{cases} s+3t-2r-5u=0 \\ {-}2s+t-3r-4u=-2, \{s,t,r,u\}\\ s-t+2r+3u=3\end{cases} \end{pmatrix}</math>
 
                                  "Keine Lösung gefunden"|2=Lösung anzeigen|3=Lösung verbergen}}
}}
'''4. Schritt:''' Interpretiere die Lösung des Gleichungssystems:
 
{{Lösung versteckt|1=
In der dritten Zeile der Lösungsmatrix befindet sich ein Widerspruch, sodass das LGS keine Lösung besitzt: <math>L=\{\}</math>. Der Taschenrechner zeigt diese Interpretation direkt unterhalb der Lösungsmatrix an. Die beiden Ebenen sind somit parallel.|2=Lösung anzeigen|3=Lösung verbergen}}


'''b)'''
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right) </math> und eine Ebene <math>F\colon \vec{x}=\left( \begin{matrix} 1\\ 3\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 4\\ 1\\ 3 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 2\\ 4\\ 3 \end{matrix} \right)</math>.
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.




'''2. Schritt:''' Stelle das zugehörige lineare Gleichungssystem auf.  
'''1. Schritt:''' Setze die beiden Ebenengleichungen gleich.


<math>\begin{vmatrix} 1+k+3l=1+2r+5s \\ 4-2k+l=2+3r+4s \\ k-l=3-2r-3s \end{vmatrix} \Leftrightarrow \begin{vmatrix} -k+3l-2r+5s=0 \\ {-}2k+l-3r-4s=-2 \\ k-l+2r+3s=3 \end{vmatrix}</math>
{{Lösung versteckt|1=<math>\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right)= \left( \begin{matrix} 1\\ 3\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 4\\ 1\\ 3 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 2\\ 4\\ 3\end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}}


'''2. Schritt:''' Stelle das zugehörige lineare Gleichungssystem auf.


{{Lösung versteckt|1=<math>\begin{vmatrix} 1+2r+3s=1+4t+2u \\ 2+3r+2s=3+t+4u \\ 5+r+4s=2+3t+3u \end{vmatrix} \Leftrightarrow \begin{vmatrix} 2r+3s-4t-2u=0 \\ 3r+2s-t-4u=1 \\ r+4s-3t-3u=-3 \end{vmatrix}</math>|2=Lösung anzeigen|3=Lösung verbergen}}


'''3. Schritt:''' Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:  
'''3. Schritt:''' Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:  


<math>\begin{vmatrix} 1 & 3 & -2 & 5 & 0 \\ 0 & 7 & -7 & -14 & -2 \\ 0 & 0 & 0 & 0 & -13\end{vmatrix}</math>
{{2Spalten
|
Mithilfe des Gaußverfahrens:


{{Lösung versteckt|1=<math>\begin{vmatrix} r+\frac{3}{2}s-2t-u=0 \\ s-2t+\frac{2}{5}u=-\frac{2}{5} \\ t-\frac{3}{4}u=-\frac{1}{2} \end{vmatrix}</math>|2=Lösung anzeigen|3=Lösung verbergen}}
|
Mithilfe des Taschenrechners:


{{Lösung versteckt|1=linSolve<math>\begin{pmatrix}\begin{cases} 2r+3s-4t-2u=0 \\ 3r+2s-t-4u=1, \{r,s,t,u\}\\ r+4s-3t-3u=-3\end{cases} \end{pmatrix}</math>
                      <math>\{\frac{17c1}{20}+\frac{11}{10},\frac{11c1}{10}-\frac{7}{5},\frac{3c1}{4}-\frac{1}{2}\}</math>
|2=Lösung anzeigen|3=Lösung verbergen}}
}}
'''4. Schritt:''' Interpretiere die Lösung des Gleichungssystems:  
'''4. Schritt:''' Interpretiere die Lösung des Gleichungssystems:  


In der dritten Zeile der Lösungsmatrix befindet sich ein Widerspruch. Somit hat das LGS keine Lösung und die beiden Ebenen sind parallel.
{{Lösung versteckt|1=
Die Lösungsmenge beträgt:<math>L=\{\frac{17c1}{20}+\frac{11}{10},\frac{11c1}{10}-\frac{7}{5},\frac{3c1}{4}-\frac{1}{2}\}</math>. Die beiden Ebenen schneiden sich in einer Schnittgeraden.|2=Lösung anzeigen|3=Lösung verbergen}}
 
'''5. Schritt:''' Bestimme die Schnittgerade:
 
{{2Spalten
|
{{Lösung versteckt|1=
Stelle die dritte Gleichung zu <math>t</math> um:
 
<math>t=\frac{3}{4}u-\frac{1}{2}</math>
 
Setze <math>t</math> in die zweite Gleichung ein und stelle zu <math>s</math> um:
 
<math>s=\frac{11}{10}u-\frac{7}{5}</math>
 
Setze <math>t</math> und <math>s</math> in die erste Gleichung ein und stelle zu <math>r</math> um:
 
<math>r=\frac{17}{20}u-\frac{11}{10}</math>
 
Setze <math>r</math> und <math>s</math> in die Ebenengleichung <math>E</math> ein:
 
<math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + (\frac{17}{20}u-\frac{11}{10}) \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + (\frac{11}{10}u-\frac{7}{5}) \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right)</math>
 
Stelle die Schnittgerade auf:
 
<math>g\colon \vec{x}=\left( \begin{matrix} \frac{27}{5}\\ {-}\frac{9}{2}\\ {-}\frac{17}{10} \end{matrix} \right) + t \cdot \left( \begin{matrix} 5\\ \frac{19}{4}\\ \frac{21}{4} \end{matrix} \right) </math>|2=Lösung anzeigen|3=Lösung verbergen}}
|
{{Lösung versteckt|1=
Setze die Werte für <math>r</math> und <math>s</math> aus der Lösungsmenge in die Ebenengleichung <math>E</math> ein:
 
<math>E\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + (\frac{17}{20}u-\frac{11}{10}) \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + (\frac{11}{10}u-\frac{7}{5}) \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right)</math>
 
Stelle die Schnittgerade auf:
 
<math>g\colon \vec{x}=\left( \begin{matrix} \frac{27}{5}\\ {-}\frac{9}{2}\\ {-}\frac{17}{10} \end{matrix} \right) + t \cdot \left( \begin{matrix} 5\\ \frac{19}{4}\\ \frac{21}{4} \end{matrix} \right) </math>|2=Lösung anzeigen|3=Lösung verbergen}}
}}
 
|Hervorhebung1| Farbe={{Farbe|orange}}}}


| Hervorhebung1}}
{{Box|Aufgabe 13: Ergebnisse interpretieren|
 
Zur Untersuchung der Lagebeziehung zweier Ebenen, wurden die Ebenengleichungen gleichgesetzt und das zugehörige Gleichungssystem aufgestellt. Betrachte die Ausgabe des Taschenrechners und interpretiere die jeweilige Situation geometrisch ohne nachzurechnen.
 
'''a)''' 


linSolve<math>\begin{pmatrix}\begin{cases} r-0{,}5u=0{,}5\\ s-u=0{,}5, \{r,s,t,u\}\\ t-1{,}5u=1\end{cases} \end{pmatrix}</math>
 
                      <math>\{0{,}5c2+0{,}5,c2+0{,}5,1{,}5c2+1,c2\}</math>


{{Box|Aufgabe 9: Ergebnisse interpretieren|


Interpretiere die jeweilige Situation geometrisch.
{{Lösung versteckt|1=Das Gleichungssystem besitzt unendlich viele Lösungen. Da nur einer der Parameter frei wählbar ist, schneiden sich die beiden Ebenen in einer Schnittgeraden.|2=Lösung anzeigen|3=Lösung verbergen}}


'''b)''' 


linSolve<math>\begin{pmatrix}\begin{cases} r-t-u=2\\ s-t-3u=-5, \{r,s,t,u\}\\ r-s+2u=2\end{cases} \end{pmatrix}</math>


'''a)''' <math>\begin{vmatrix} 1 & 0 & 0 & -0{,}5 & 0{,}5 \\ 0 & 1 & 0 & -1 & 0{,}5 \\ 0 & 0 & 1 & 1{,}5 & 1 \end{vmatrix}</math>
                      "Keine Lösung gefunden"


{{Lösung versteckt|1=Das Gleichungssystem besitzt unendlich viele Lösungen. Da sich in jeder Zeile der Diagonalform Einträge befinden, ist nur ein Parameter frei wählbar und die Ebenen schneiden sich in einer Schnittgeraden.|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=Das Gleichungssystem besitzt keine Lösung. Die Ebenen liegen somit parallel zueinander.|2=Lösung anzeigen|3=Lösung verbergen}}


'''b)''' <math>\begin{vmatrix} 1 & 0 & -1 & -1 & 2 \\ 0 & 1 & -1 & -3 & -5 \\ 0 & 0 & 0 & 0 & -5 \end{vmatrix}</math>
'''c)''' 


{{Lösung versteckt|1=Das Gleichungssystem besitzt keine Lösung, da sich in der dritten Zeile ein Widerspruch befindet. Die Ebenen liegen also parallel zueinander.|2=Lösung anzeigen|3=Lösung verbergen}}
linSolve<math>\begin{pmatrix}\begin{cases} 3r-1{,}5s+6t-0{,}9u=0\\ {-}r+0{,}5s-2t+0{,}3u=0, \{r,s,t,u\}\\{-}1{,}5r+\frac{3}{4}s-3t-0{,}45=0\end{cases} \end{pmatrix}</math>


'''c)''' <math>\begin{vmatrix} 1 & 3 & -2 & -5 & 3 \\ 0 & 7 & -7 & 14 & 7 \\ 0 & 0 & 0 & 0 & 0 \end{vmatrix}</math>
                      <math>\{-2c4+0{,}5c5-0{,}3,c5,c4,-1\}</math>


{{Lösung versteckt|1=Das Gleichungssystem besitzt unendlich viele Lösungen. Da die dritte Zeile nur aus Nullen besteht, sind zwei Parameter frei wählbar und die Ebenen identisch.|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=Das Gleichungssystem besitzt unendlich viele Lösungen. Da zwei Parameter frei wählbar sind, sind die beiden Ebenen identisch.|2=Lösung anzeigen|3=Lösung verbergen}}


|Arbeitsmethode}}
|Arbeitsmethode}}


====&#x2B50;Ebenengleichungen in Parameter- und Koordinatenform====
====&#x2B50;Ebenengleichungen in Parameter- und Koordinatenform====
{{Box|Merke: Lagebeziehung von zwei Ebenen in Koordinatenform und Parameterform untersuchen. |
{{Box|&#x2B50;Merke: Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform untersuchen |Seien durch <math>E\colon \vec{x}=\vec{a}+r\cdot\vec{u}+s\cdot\vec{v}</math> eine Ebene in Parameterform und durch <math>F\colon n_1x_1+n_2x_2+n_3x_3=d</math> eine Ebene in Koordinatenform gegeben. Zur Untersuchung ihrer Lagebeziehung kannst du entsprechend des folgenden Schemas vorgehen:
 
[[Datei:Vorgehen zur Untersuchung der Lagebeziehung von zwei Ebenen.jpg|zentriert|rahmenlos|600x600px]]
[[Datei:Vorgehen zur Untersuchung der Lagebeziehung von zwei Ebenen.jpg|zentriert|rahmenlos|600x600px]]
|Merksatz}}
|Merksatz}}


{{Box | Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform und Parameterform |
{{Box|&#x2B50;Aufgabe 14: Untersuchung der Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform|
 
'''a)''' Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)</math> und eine Ebene <math>F\colon -1{,}5x_1+3x_2-1{,}5x_3=4{,}5</math>.
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.


Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)</math> und eine Ebene <math>F\colon -1{,}5x_1+3x_2-1{,}5x_3=4{,}5</math>.
Untersuche die Lagebeziehung der beiden Ebenen.


'''1. Schritt:''' Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen:


'''1. Schritt:''' Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{v}</math> der Ebene <math>F</math> liegen.
{{Lösung versteckt|1=Betrachte das Skalarprodukt der Richtungsvektoren und des Normalenvektors.|2=Tipp anzeigen|3=Tipp verbergen}}


Hierfür muss gelten, dass <math>\vec{n} \ast \vec{u}=0</math> und <math>\vec{n} \ast \vec{v}=0</math>.
{{Lösung versteckt|1=Es muss gelten, dass <math>\vec{n} \ast \vec{u}=0</math> und <math>\vec{n} \ast \vec{v}=0</math>.


<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} {-}1{,}5\\ 3\\ {-}1{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right)=-1{,}5+0+1{,}5=0</math>
<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} {-}1{,}5\\ 3\\ {-}1{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right)=-1{,}5+0+1{,}5=0</math>


<math>\vec{n} \ast \vec{v}=\left( \begin{matrix} -1{,}5\\ 3\\ {-}1{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)=-3+3+0=0</math>
<math>\vec{n} \ast \vec{v}=\left( \begin{matrix} -1{,}5\\ 3\\ {-}1{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)=-3+3+0=0</math>|2=Lösung anzeigen|3=Lösung verbergen}}
 
 
'''2.Schritt:''' Interpretiere die Lösung der Skalarprodukte:
 
{{Lösung versteckt|1=Da beide Skalarprodukte der jeweiligen Vektoren <math>0</math> sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.|2=Lösung anzeigen|3=Lösung verbergen}}
 
 
'''3. Schritt:''' Überprüfe die Lagebeziehung mithilfe der Punktprobe:
 
{{Lösung versteckt|1=Verwende für die Punktprobe den Aufpunkt der Ebene <math>E</math>.|2=Tipp anzeigen|3=Tipp verbergen}}
 
{{Lösung versteckt|1=Setze  den Aufpunkt der Ebene <math>E</math> in die Ebenengleichung der Ebene <math>F</math> ein.
 
<math>-1{,}5\cdot2+3\cdot1-1{,}5\cdot(-3)=4{,}5\checkmark</math>|2=Lösung anzeigen|3=Lösung verbergen}}
 
 
'''4. Schritt:''' Interpretiere die Lösung der Punktprobe:
 
{{Lösung versteckt|1=Da der Aufpunkt die Koordinatengleichung von <math>F</math> erfüllt, liegt der Aufpunkt in <math>F</math>. Da wir bereits wissen, dass die Ebenen entweder parallel oder identisch sind, haben wir damit gezeigt, dass <math>E</math> und <math>F</math> identisch sind.|2=Lösung anzeigen|3=Lösung verbergen}}
 
 
'''b)'''
Gegeben sind eine Ebene <math>E\colon \vec{x}=\left( \begin{matrix} 8\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 5\\ 0\\ {-}1 \end{matrix} \right)</math> und eine Ebene <math>F\colon x_1-x_2+3x_3=12</math>.
Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.
 
 
'''1. Schritt:''' Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen:
 
{{Lösung versteckt|1=Betrachte das Skalarprodukt der Richtungsvektoren und des Normalenvektors.|2=Tipp anzeigen|3=Tipp verbergen}}
 
{{Lösung versteckt|1=Es muss gelten, dass <math>\vec{n} \ast \vec{u}=0</math> und <math>\vec{n} \ast \vec{v}=0</math>.
 
<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 1\\ {-}1\\ 3 \end{matrix} \right)\ast\left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right)=-4-1+3=-2</math>|2=Lösung anzeigen|3=Lösung verbergen}}
 
 
'''2.Schritt:''' Interpretiere die Lösung der Skalarprodukte:


{{Lösung versteckt|1=Da das Skalarprodukt des ersten Richtungsvektors bereits <math>\neq0</math> ist, braucht man das Skalarprodukt des zweiten Richtungsvektors nicht mehr zu berechnen. Du kannst nun direkt folgern, dass sich die Ebenen in einer Schnittgeraden schneiden.|2=Lösung anzeigen|3=Lösung verbergen}}


'''3. Schritt:''' Bestimme die Schnittgerade:


'''2.Schritt:''' Interpretiere die Lösung des Skalarproduktes:
{{Lösung versteckt|1=Schreibe mithilfe der Ebenengleichung <math>E</math>  die Gleichungen für die einzelnen Koordinaten auf.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}


Da das Skalarprodukt der Vektoren <math>0</math> ist, liegen sie orthogonal zueinander. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.
{{Lösung versteckt|1=Setze die Werte für <math>x_1,x_2</math> und <math>x_3</math> in die Ebenengleichung <math>F</math> ein.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}


{{Lösung versteckt|Setze <math>s</math> in die Ebenengleichung <math>E</math> ein, um anschließend die Geradengleichung aufstellen zu können.|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}


{{Lösung versteckt|1=Durch Umformen der Ebenengleichung erhält man:


'''3. Schritt:''' Überprüfe die Lagebeziehung mithilfe der Punktprobe.
<math>x_1=8-4r+5s</math>,<math>x_2=r</math>,<math>x_3=2+r-s</math>


Setze hierfür den Stützvektor (Aufpunkt) der Ebene <math>E</math> in die Ebenengleichung der Ebene <math>F</math> ein.
Einsetzen der Werte in die Ebenengleichung ergibt:


<math>-1{,}5\cdot2+3\cdot1-1{,}5\cdot(-3)=4{,}5\Leftrightarrow4{,}5=4{,}5</math>
<math>(8-4r+5s)-r+3(2+r-s)=12\Leftrightarrow s=r-1</math>


Einsetzen von <math>s</math> in <math>E</math> ergibt:


'''4. Schritt:''' Interpretiere die Lösung der Punktprobe.
<math>E\colon \vec{x}=\left( \begin{matrix} 8\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right) + (r-1) \cdot \left( \begin{matrix} 5\\ 0\\ {-}1 \end{matrix} \right)</math>


Da der Aufpunkt die Koordinatengleichung von <math>F</math> erfüllt, liegt <math>E</math> in <math>F</math> und die Ebenen sind identisch.
Nun kannst du die Geradengleichung aufstellen:
| Hervorhebung1}}


{{Box|Aufgabe 10: Lagebeziehungen berechnen|
<math>g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 3 \end{matrix} \right) + t \cdot \left( \begin{matrix} 1\\ 1\\ 0 \end{matrix} \right)</math>|2=Lösung anzeigen|3=Lösung verbergen}}|
Arbeitsmethode|Farbe={{Farbe|orange}}}}


Untersuche die Lagebeziehung der jeweiligen Ebenen.
{{Box|&#x2B50;Aufgabe 15: Lagebeziehungen untersuchen.|


Untersuche die Lagebeziehung der jeweiligen Ebenen. Falls sich die Ebenen in einer Schnittgerade schneiden, brauchst du diese nicht zu berechnen.




Zeile 457: Zeile 692:
{{Lösung versteckt|1=
{{Lösung versteckt|1=


Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{v}</math> der Ebene <math>F</math> liegen.  
Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen.  


<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 0\\ {-}1\\ 2 \end{matrix} \right)\ast\left( \begin{matrix} 7\\ 1\\ {-}3 \end{matrix} \right)=-7</math>
<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 0\\ {-}1\\ 2 \end{matrix} \right)\ast\left( \begin{matrix} 7\\ 1\\ {-}3 \end{matrix} \right)=-7</math>


<math>\vec{n} \ast \vec{v}=\left( \begin{matrix} 1\\ 0\\ 0\end{matrix} \right)\ast\left( \begin{matrix} 7\\ 1\\ {-}3 \end{matrix} \right)=7</math>
Da das Skalarprodukt des ersten Richtungsvektors bereits <math>\neq0</math> ist, braucht man das Skalarprodukt des zweiten Richtungsvektors nicht mehr zu berechnen. Du kannst nun direkt folgern, dass sich die Ebenen in einer Schnittgeraden schneiden.
 
Da das Skalarprodukt der Vektoren <math>\neq0</math> ist, liegen sie nicht orthogonal zueinander. Somit schneiden sich die Ebenen in einer Schnittgeraden.


|2=Lösung anzeigen|3=Lösung verbergen}}
|2=Lösung anzeigen|3=Lösung verbergen}}
Zeile 473: Zeile 706:
{{Lösung versteckt|1=  
{{Lösung versteckt|1=  


Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{v}</math> der Ebene <math>F</math> liegen.  
Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen.  


<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 2\\ {-}1\\ 3 \end{matrix} \right)\ast\left( \begin{matrix} {-}3\\ {-}9\\ {-}1 \end{matrix} \right)=0</math>
<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} 2\\ {-}1\\ 3 \end{matrix} \right)\ast\left( \begin{matrix} {-}3\\ {-}9\\ {-}1 \end{matrix} \right)=0</math>
Zeile 479: Zeile 712:
<math>\vec{n} \ast \vec{v}=\left( \begin{matrix} {-}1\\ 0\\ 3\end{matrix} \right)\ast\left( \begin{matrix} {-}3\\ {-}9\\ {-}1 \end{matrix} \right)=0</math>
<math>\vec{n} \ast \vec{v}=\left( \begin{matrix} {-}1\\ 0\\ 3\end{matrix} \right)\ast\left( \begin{matrix} {-}3\\ {-}9\\ {-}1 \end{matrix} \right)=0</math>


Da das Skalarprodukt der Vektoren <math>0</math> ist, liegen sie orthogonal zueinander.
Da beide Skalarprodukte der jeweiligen Vektoren <math>0</math> sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.


Punktprobe:<math>-3\cdot{-}3-9\cdot1-0=-18\neq5</math>
Punktprobe:<math>-3\cdot({-}3)-9\cdot1-0=-18\neq5</math>


Da die Koordinatengleichung <math>F</math> nicht erfüllt wird, liegen die Ebenen parallel zueinander.
Da die Koordinatengleichung <math>F</math> nicht erfüllt wird, liegen die Ebenen parallel zueinander.
Zeile 493: Zeile 726:
{{Lösung versteckt|1=
{{Lösung versteckt|1=


Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{v}</math> der Ebene <math>F</math> liegen.  
Prüfe, ob die Richtungsvektoren <math>\vec{u}</math> und <math>\vec{v}</math> der Ebene <math>E</math> orthogonal zum Normalenvektor <math>\vec{n}</math> der Ebene <math>F</math> liegen.  


<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} -1 \\ 0 \\ {-}0{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 2\\ {-}2\\ {-}4 \end{matrix} \right)=0</math>
<math>\vec{n} \ast \vec{u}=\left( \begin{matrix} -1 \\ 0 \\ {-}0{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 2\\ {-}2\\ {-}4 \end{matrix} \right)=0</math>
Zeile 499: Zeile 732:
<math>\vec{n} \ast \vec{v}=\left( \begin{matrix} 4 \\ 2 \\ 1 \end{matrix} \right)\ast\left( \begin{matrix} 2\\ {-}2\\ {-}4 \end{matrix} \right)=0</math>
<math>\vec{n} \ast \vec{v}=\left( \begin{matrix} 4 \\ 2 \\ 1 \end{matrix} \right)\ast\left( \begin{matrix} 2\\ {-}2\\ {-}4 \end{matrix} \right)=0</math>


Da das Skalarprodukt der Vektoren <math>0</math> ist, liegen sie orthogonal zueinander.
Da beide Skalarprodukte der jeweiligen Vektoren <math>0</math> sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.


Punktprobe:<math>2\cdot2-2\cdot(-1)-3\cdot4=-6\Leftrightarrow-6=-6</math>
Punktprobe:<math>2\cdot2-2\cdot(-1)-3\cdot4=-6\checkmark</math>


Da die Koordinatengleichung von <math>F</math> erfüllt wird, liegt <math>E</math> in <math>F</math> und die Ebenen sind identisch.
Da die Koordinatengleichung von <math>F</math> erfüllt wird, liegt <math>E</math> in <math>F</math> und die Ebenen sind identisch.
Zeile 510: Zeile 743:


====&#x2B50;Beide Ebenengleichungen in Koordinatenform====
====&#x2B50;Beide Ebenengleichungen in Koordinatenform====
{{Box|Merke: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform |
{{Box|&#x2B50;Merke: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform |Seien durch <math>E\colon n_1x_1+n_2x_2+n_3x_3=d</math> und  <math>F\colon m_1x_1+m_2x_2+m_3x_3=e</math> zwei Ebenen in Koordinatenform gegeben. Zur Untersuchung ihrer Lagebeziehung kannst du entsprechend des folgenden Schemas vorgehen:
[[Datei:Vorgehen zur Untersuchung der Lagebeziehung von Ebenen in Koordinatenform.jpg|zentriert|rahmenlos|600x600px]]
 
[[Datei:Lagebeziehung von Ebenen in Koordinatenform.jpg|zentriert|rahmenlos|600x600px]]
|Merksatz}}
|Merksatz}}


{{Box | Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform |  
{{Box | &#x2B50;Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform |  
 
Gegeben sind eine Ebene <math>E\colon 3x_1-4x_2-x_3=4</math> und eine Ebene <math>F\colon 3x_1-3x_2+x_3=3</math>. Untersuche die Lagebeziehung der beiden Ebenen.
 


Gegeben sind eine Ebene <math>E\colon 3x_1-4x_2-x_3=4</math> und eine Ebene <math>F\colon 3x_1-3x_2+x_3=3</math>. Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.


'''1. Schritt:''' Prüfe, ob der Normalenvektor <math>\vec{n}</math> der Ebene <math>E</math> ein Vielfaches des Normalenvektors <math>\vec{m}</math> der Ebene <math>F</math> ist.
'''1. Schritt:''' Prüfe, ob der Normalenvektor <math>\vec{n}</math> der Ebene <math>E</math> ein Vielfaches des Normalenvektors <math>\vec{m}</math> der Ebene <math>F</math> ist.


<math>r\cdot\vec{n}=\vec{m} \Leftrightarrow r\cdot\left( \begin{matrix} 3\\ {-}4\\ {-}1 \end{matrix} \right)=\left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right) \Leftrightarrow \begin{vmatrix} 3r=1\\ {-}4r=0 \\ {-}r=-1 \end{vmatrix}</math>
Bei der Betrachtung der Normalenvektoren <math>\vec{n}=\left( \begin{matrix} 3\\ {-}4\\ {-}1 \end{matrix} \right)</math> und <math>\vec{m}=\left( \begin{matrix} 3\\ {-}3\\ 1 \end{matrix} \right) </math> fällt direkt auf, dass die beiden Vektoren keine Vielfachen voneinander sind. Man kann also direkt schließen, dass sich die beiden Ebenen in einer Schnittgeraden schneiden. Ein formaler Nachweis würde wie folgt aussehen:


<math>r\cdot\vec{n}=\vec{m} \Leftrightarrow r\cdot\left( \begin{matrix} 3\\ {-}4\\ {-}1 \end{matrix} \right)=\left( \begin{matrix} 3\\ {-}3\\ 1 \end{matrix} \right) \Leftrightarrow \begin{vmatrix} 3r=3\\ {-}4r=-3 \\ {-}r=1 \end{vmatrix}</math>


'''2. Schritt:''' Interpretiere die Lösung des LGS.
Da das LGS nicht lösbar ist, sind die Vektoren keine Vielfachen voneinander und die Ebenen schneiden sich in einer Schnittgeraden.


Da das LGS nicht lösbar ist, sind die beiden Gleichungen linear unabhängig und die Ebenen schneiden sich in einer Schnittgeraden.
'''2. Schritt:''' Bestimme die Schnittgerade.


Stelle mit den beiden Ebenengleichungen ein LGS auf und löse es mithilfe des Gauß-Algorithmus oder dem Taschenrechner.


'''3. Schritt:''' Bestimme die Schnittgerade.
{{2Spalten
 
|
Stelle mit den beiden Ebenengleichungen ein LGS auf und löse es mithilfe des Gauß-Algorithmus oder dem Taschenrechner.
Mithilfe des Gaußverfahrens:


<math>\begin{vmatrix} 3 & -4 & -1 & 4 \\ 3 & -3 & 1 & 3 \end{vmatrix} \Leftrightarrow \begin{vmatrix} 3 & -4 & -1 & 4 \\ 0 & 1 & 2 & -1 \end{vmatrix}</math>
<math>\begin{vmatrix} 3x_1-4x_2-x_3=4 \\ 3x_1-3x_2+x_3=3\end{vmatrix} \Leftrightarrow \begin{vmatrix} 3x_1-4x_2-x_3=4 \\ x_2+2x_3=-1\end{vmatrix}</math>


Setze <math>x_3=t</math> und bestimme <math>x_1</math> und <math>x_2</math>.
Setze <math>x_3=t</math> und bestimme <math>x_1</math> und <math>x_2</math>.
Zeile 540: Zeile 774:
<math>x_2=-1-2t</math>
<math>x_2=-1-2t</math>


<math>x_1=-\frac{7}{3}</math>
<math>x_1=-\frac{7}{3}t</math>


Stelle die Geradengleichung auf.
Stelle die Geradengleichung auf.


<math>g\colon \vec{x} = \begin{pmatrix} 0 \\ {-}1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -\frac{7}{3} \\ {-}2 \\ 1 \end{pmatrix} </math>| Hervorhebung1}}
<math>g\colon \vec{x} = \begin{pmatrix} 0 \\ {-}1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -\frac{7}{3} \\ {-}2 \\ 1 \end{pmatrix} </math>
|
Mithilfe des Taschenrechners:
 
linSolve<math>\begin{pmatrix}\begin{cases} 3x_1-4x_2-x_3=4 \\ 3x_1-3x_2+x_3=3,\{x_1,x_2,x_3\}\end{cases} \end{pmatrix}</math>
 
                      <math>\{\frac{-7c3}{3},-2c3-1,c3\}</math>
 
Stelle mithilfe der Werte aus der Lösungsmenge die Geradengleichung auf.
 
<math>g\colon \vec{x} = \begin{pmatrix} 0 \\ {-}1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -\frac{7}{3} \\ {-}2 \\ 1 \end{pmatrix} </math>
}}
 
| Hervorhebung1}}


{{Box|Aufgabe 11: Untersuchung der Lagebeziehung zwischen zwei Ebenen in Koordinatenform |
{{Box|&#x2B50;Aufgabe 16: Untersuchung der Lagebeziehung zwischen zwei Ebenen in Koordinatenform |
Gegeben ist eine Ebene <math>E\colon \vec{x}=-2x_1-3x_2+x_3=2</math>. Untersuche die Lagebeziehung zwischen dieser und den dir angezeigten Ebenen. Ziehe die Ebenen in das entsprechende Feld.
Gegeben ist eine Ebene <math>E\colon -2x_1-3x_2+x_3=2</math>. Untersuche die Lagebeziehung zwischen dieser und den dir angezeigten Ebenen. Ziehe die Ebenen in das entsprechende Feld.


{{LearningApp|width=100%|height=500px|app=pq97ryxmn21}}
{{LearningApp|width=100%|height=500px|app=pq97ryxmn21}}


{{Lösung versteckt|1= Um die Lagebeziehung von zwei Ebenen in Koordinatenform zu bestimmen, benötigst du keinen Taschenrechner.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
{{Lösung versteckt|1= Um die Lagebeziehung von zwei Ebenen in Koordinatenform zu bestimmen, benötigst du keinen Taschenrechner. Schaue dir die beiden Gleichungen gut an.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
 
{{Lösung versteckt|1=Vergleiche die Gleichungen der zwei Ebenen miteinander. Vergleiche dabei zunächst die Normalenvektoren der Ebenen – also die linken Seiten der Gleichungen – miteinander und überprüfe, ob sie Vielfache voneinander sind. Falls das zutrifft, vergleiche auch noch die beiden rechte Seiten der Gleichungen miteinander.|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}


{{Lösung versteckt|1=  
{{Lösung versteckt|1=  
Vergleiche die Gleichungen der zwei Ebenen miteinander.
 
Die Ebenen schneiden sich, wenn die beiden Gleichungen linear unabhängig voneinander sind.
Die Ebenen schneiden sich, wenn die beiden Gleichungen keine Vielfachen voneinander sind.
 
Die Ebenen sind parallel, wenn die Normalenvektoren identisch oder Vielfache voneinander sind, aber das LGS keine Lösung besitzt.
Die Ebenen sind parallel, wenn die Normalenvektoren identisch oder Vielfache voneinander sind, aber das LGS keine Lösung besitzt.
DIe Ebenen sind identisch, wenn die Normalenvektoren identisch oder Vielfache voneinander sind und das LGS somit unendlich viele Lösungen hat.
 
|2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
Die Ebenen sind identisch, wenn die Normalenvektoren identisch oder Vielfache voneinander sind und das LGS somit unendlich viele Lösungen hat.
|2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}


|Arbeitsmethode}}
|Arbeitsmethode}}


{{Box|Aufgabe 12: Schnitt von zwei Zeltflächen|
{{Box|&#x2B50;Aufgabe 17: Schnitt von zwei Zeltflächen|


Die beiden Seitenflächen eines Zeltes liegen in den Ebenen <math>E\colon \vec{x} = \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 3 \\ 4\end{pmatrix}</math> und <math>F\colon \vec{x} = \begin{pmatrix} 8 \\ 6 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ u \cdot \begin{pmatrix} 0 \\ {-}3 \\ 4 \end{pmatrix}</math>. Der Erdboden wird durch die <math>x_1</math>-<math>x_2</math> -Ebene aufgespannt. In welcher Höhe befindet sich die obere Zeltkante, wenn eine Einheit im Koordinatensystem <math>50</math> cm entspricht?
Die beiden Seitenflächen eines Zeltes liegen in den Ebenen <math>E\colon \vec{x} = \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 3 \\ 4\end{pmatrix}</math> und <math>F\colon \vec{x} = \begin{pmatrix} 8 \\ 6 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ u \cdot \begin{pmatrix} 0 \\ {-}3 \\ 4 \end{pmatrix}</math>. Der Erdboden wird durch die <math>x_1x_2</math> -Ebene aufgespannt.


{{Lösung versteckt|1= Mache dir zunächst eine Skizze von der Situation. Überlege dir, womit die obere Zeltkante beschrieben werden kann.|2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}
[[Datei:Skizze- Schnittgerade zweier Zeltwände.png|rahmenlos]]
In welcher Höhe befindet sich die obere Zeltkante, wenn eine Einheit im Koordinatensystem <math>50</math> cm entspricht?


{{Lösung versteckt|1= Die obere Zeltkante entspricht der Schnittgeraden der beiden Ebenen. |2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}
{{Lösung versteckt|1= Die obere Zeltkante entspricht der Schnittgeraden der beiden Ebenen. |2=Tipp 1 anzeigen|3=Tipp 1 verbergen}}


{{Lösung versteckt|1= Die Höhe der Zeltkante kannst du mithilfe des Stützvektors der Schnittgeraden ermitteln. |2=Tipp 3 anzeigen|3=Tipp 3 verbergen}}
{{Lösung versteckt|1= Die Höhe der Zeltkante kannst du mithilfe des Stützvektors der Schnittgeraden ermitteln. |2=Tipp 2 anzeigen|3=Tipp 2 verbergen}}


{{Lösung versteckt|1= Die Zeltkante entspricht der Schnittgeraden der beiden Ebenen. Um die Höhe zu bestimmen, benötigt man also den Stützvektor der Geradengleichung der Zeltkante.
{{Lösung versteckt|1= Die Zeltkante entspricht der Schnittgeraden der beiden Ebenen. Um die Höhe zu bestimmen, benötigt man also den Stützvektor der Geradengleichung der Zeltkante.
Zeile 576: Zeile 829:
Da die Ebenen in Parameterform gegeben sind, setzen wir die Gleichungen zunächst gleich und lösen dann das entsprechende LGS:
Da die Ebenen in Parameterform gegeben sind, setzen wir die Gleichungen zunächst gleich und lösen dann das entsprechende LGS:


<math>\begin{vmatrix} 8-r=8-t \\ 3s=6-3u \\ 4s=4u \end{vmatrix} \Leftrightarrow \begin{vmatrix} -r+t=0\\ 3s+3u=6 \\4s-4u=0 \end{vmatrix}</math>
<math>\begin{vmatrix} 8-r=8-t \\ 3s=6-3u \\ 4s=4u \end{vmatrix} \Leftrightarrow \begin{vmatrix} -r+t=0\\ 3s+3u=6 \\4s-4u=0 \end{vmatrix}\Leftrightarrow \begin{vmatrix} r=t\\ s+u=2 \\ s=u\end{vmatrix}</math>
 
<math>\Rightarrow \begin{vmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & 3 & 6 \\ 4 & 0 & 0 & 4 & 0\end{vmatrix}</math>


<math>\Rightarrow s=u=1</math> und <math>r=t</math>
<math>\Rightarrow s=u=1</math> und <math>r=t</math>
Zeile 590: Zeile 841:
<math>g\colon \vec{x} = \left( \begin{matrix} 8\\ 3\\ 4 \end{matrix} \right) + v \cdot \left( \begin{matrix} -1\\ 0\\ 0 \end{matrix} \right)</math>
<math>g\colon \vec{x} = \left( \begin{matrix} 8\\ 3\\ 4 \end{matrix} \right) + v \cdot \left( \begin{matrix} -1\\ 0\\ 0 \end{matrix} \right)</math>


Da die Schnittgerade der oberen Zeltkante entspricht, lässt sich aus dem Stützvektor der Geraden die Höhe ablesen. Die Höhe kann mithilfe der <math>x_3</math>-Koordinate des Vektors bestimmt werden.
Durch den Richtungsvektor der Geraden wird deutlich, dass sich die Schnittgerade parallel zur <math>x_1x_2</math> -Ebene befindet und somit überall den gleichen Abstand zum Boden hat. Da die Schnittgerade der oberen Zeltkante entspricht, lässt sich aus dem Stützvektor der Geraden die Höhe ablesen. Die Höhe kann mithilfe der <math>x_3</math>-Koordinate des Vektors bestimmt werden.


Die obere Zeltkante befindet sich also in <math>2</math> m Höhe.
Die obere Zeltkante befindet sich also in <math>2</math> m Höhe.
Zeile 600: Zeile 851:
===&#x2B50;Berechnung des Winkels zwischen Ebene und Ebene===
===&#x2B50;Berechnung des Winkels zwischen Ebene und Ebene===


{{Box | Merke: Berechnung des Winkel zwischen zwei Ebenen |  
{{Box | &#x2B50; Merke: Berechnung des Winkel zwischen zwei Ebenen |  
Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Wie in Abbildung ... zu sehen ist, kannst du dazu die Normalenvektoren betrachten. Sie schließen denselben Winkel ein, wie die beiden Ebenen. Betrachten wir die Normalenvektoren, so können wir ähnlich vorgehen, wie beim Berechnen des Winkels zwischen zwei Geraden.  
Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Dazu kannst du die Normalenvektoren betrachten. Sie schließen denselben Winkel ein, wie die beiden Ebenen. Somit kann das Berechnen des Schnittwinkels zwischen zwei Ebenen auf das Berechnen des Winkels zwischen zwei Vektoren zurückgeführt werden.
Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum]]. | Merksatz}}  
Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in das Kapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Ebenen im Raum|Ebenen im Raum]]. | Merksatz}}  


{{Box | Merksatz: Formel zur Berechnung des Winkels zwischen zwei Ebenen |  
{{Box | &#x2B50; Merksatz: Formel zur Berechnung des Winkels zwischen zwei Ebenen |  


[[Datei:Abbildung Winkel zwischen zwei Ebenen.jpg| rechts | mini |Abbildung: Winkel zwischen zwei Ebenen]]
[[Datei:Abbildung Winkel zwischen zwei Ebenen.jpg| rechts | mini | Winkel zwischen zwei Ebenen]]


Seien <math>E</math> und <math>F</math> zwei sich schneidende Ebenen mit den Normalenvektoren <math>\vec{n}</math> und <math>\vec{m}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>F</math> kann mit folgender Formel berechnet werden: <math>\cos(\alpha)=\frac{ \vec{n} \ast \vec{m}}{|\vec{n}| \cdot |\vec{m}|}</math>.
Seien <math>E</math> und <math>F</math> zwei sich schneidende Ebenen mit den Normalenvektoren <math>\vec{n}</math> und <math>\vec{m}</math>. Der Schnittwinkel <math>\alpha</math> zwischen <math>E</math> und <math>F</math> kann mit folgender Formel berechnet werden: <math>\cos(\alpha)=\frac{ |\vec{n} \ast \vec{m}|}{|\vec{n}| \cdot |\vec{m}|}</math>.


Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Dein berechneter Winkel <math>\alpha</math> darf also nur zwischen <math>0^{\circ}</math> und <math>90^{\circ}</math> liegen. Ist dein berechneter Winkel <math>\alpha > 90^{\circ}</math>, so musst du <math>180^{\circ} - \alpha</math> berechnen, und erhälst so den kleineren der beiden Winkel. In einigen Textaufgaben ist jedoch der größere der beiden Winkel gesucht. Hier können dir Skizzen helfen.| Merksatz}}
Ist nach dem '''Schnittwinkel''' gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Mit der obigen Formel erhält man deshalb für <math>\alpha</math> immer Werte zwischen <math>0^{\circ}</math> und <math>90^{\circ}</math>. | Merksatz}}


{{Box | Beispiel: Winkel berechnen zwischen zwei Ebenen |  
{{Box | &#x2B50;Beispiel: Winkel berechnen zwischen zwei Ebenen |  


Gegeben sind zwei Ebenen <math>E</math> und <math>F</math> mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix}+ s \cdot \begin{pmatrix} 1 \\ 1 \\ 0\end{pmatrix}</math> und <math>F\colon 7x_1+x_2-3x_3</math>. Berechne den Schnittpunkt zwischen den Ebenen.
Gegeben sind zwei Ebenen <math>E</math> und <math>F</math> mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix}+ s \cdot \begin{pmatrix} 1 \\ 1 \\ 0\end{pmatrix}</math> und <math>F\colon 7x_1+x_2-3x_3=1</math>. Berechne den Schnittpunkt zwischen den Ebenen.


'''1. Schritt:''' Bestimmte die Normalenvektoren von <math>E</math> und <math>F</math>.  
'''1. Schritt:''' Bestimmte die Normalenvektoren von <math>E</math> und <math>F</math>.  
Zeile 622: Zeile 873:
'''2. Schritt:''' Einsetzen der Normalenvektoren in die Formel.
'''2. Schritt:''' Einsetzen der Normalenvektoren in die Formel.


<math>\cos(\alpha)=\frac{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \ast \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{16}{\sqrt{9} \cdot \sqrt{59}} \Leftrightarrow \cos(\alpha) = \frac{16}{3 \cdot \sqrt{59}} </math>
<math>\cos(\alpha)=\frac{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \ast \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{15}{\sqrt{9} \cdot \sqrt{59}} \Leftrightarrow \cos(\alpha) = \frac{15}{3 \cdot \sqrt{59}} </math>


'''3. Schritt:''' Auflösen der Gleichung.
'''3. Schritt:''' Auflösen der Gleichung.


<math>\alpha = cos^{-1}(\frac{16}{3 \cdot \sqrt {59}}) \Leftrightarrow \alpha \approx 46{,}03^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>46{,}03^{\circ}</math>.| Hervorhebung1}}
<math>\alpha = \cos^{-1}(\frac{15}{3 \cdot \sqrt {59}}) \Leftrightarrow \alpha \approx 49{,}39^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>49{,}39^{\circ}</math>.| Hervorhebung1}}




{{Box | Aufgabe 13: Schnittwinkel zwischen Ebenen |  
{{Box | &#x2B50; Aufgabe 18: Schnittwinkel zwischen Ebenen |  


Sei <math>E</math> eine Ebene mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix}</math> ,
Sei <math>E</math> eine Ebene mit <math>E\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix}</math> ,
<math>F</math> eine Ebene mit <math>F\colon 2x_1+6x_2-4x_3=2</math>.  
<math>F</math> eine Ebene mit <math>F\colon 2x_1+6x_2+4x_3=2</math>.  
und <math>H</math> eine Ebene mit <math>H\colon 2x_1+4x_2-7x_3=13 </math> .  
und <math>H</math> eine Ebene mit <math>H\colon 2x_1+4x_2-7x_3=13 </math> .  


Berechne den Winkel zwischen  
Berechne den Winkel zwischen  


'''a)''' E und F  
'''a)''' <math>E</math> und <math>F</math>


{{Lösung versteckt|1= Bei der Ebene <math>E</math> handelt es sich um die <math>x_1-x_2-</math> Ebene. Der Normalenvektor ist also <math>\vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} </math>. Der Normalenvektor der Ebene <math>F</math> kann abgelesen werden: <math>\vec{m} = \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix}</math>.
{{Lösung versteckt|1= Bei der Ebene <math>E</math> handelt es sich um die <math>x_1x_2</math> -Ebene. Der Normalenvektor ist also <math>\vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} </math>. Der Normalenvektor der Ebene <math>F</math> kann abgelesen werden: <math>\vec{m} = \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix}</math>.


Einsetzen in die Formel liefert:  
Einsetzen in die Formel liefert:  
Zeile 647: Zeile 898:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:


<math>\alpha = cos^{-1}(\frac{4}{\sqrt {56}}) \Leftrightarrow \alpha \approx 57{,}69^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>57{,}69^{\circ}</math>.
<math>\alpha = \cos^{-1}(\frac{4}{\sqrt {56}}) \Leftrightarrow \alpha \approx 57{,}69^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>F</math> beträgt ca. <math>57{,}69^{\circ}</math>.


|2=Lösung anzeigen|3=Lösung verbergen}}
|2=Lösung anzeigen|3=Lösung verbergen}}


'''b)''' F und H und
'''b)''' <math>F</math> und <math>H</math>


{{Lösung versteckt|1=
{{Lösung versteckt|1=
Zeile 663: Zeile 914:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:


<math>\alpha = cos^{-1}(0) \Leftrightarrow \alpha = 90^{\circ}</math> Der Winkel zwischen den Ebenen <math>F</math> und <math>H</math> beträgt ca. <math>90^{\circ} </math>.
<math>\alpha = \cos^{-1}(0) \Leftrightarrow \alpha = 90^{\circ}</math> Der Winkel zwischen den Ebenen <math>F</math> und <math>H</math> beträgt ca. <math>90^{\circ} </math>.


|2=Lösung anzeigen|3=Lösung verbergen}}
|2=Lösung anzeigen|3=Lösung verbergen}}


'''c)''' E und H.
'''c)''' <math>E</math> und <math>H</math>.


{{Lösung versteckt|1=
{{Lösung versteckt|1=


Bei der Ebene <math>E</math> handelt es sich um die <math>x_1-x_2-</math> Ebene. Der Normalenvektor ist also <math>\vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} </math>. Der Normalenvektor der Ebene <math>H</math> kann abgelesen werden: <math>\vec{m} = \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix}</math>.
Bei der Ebene <math>E</math> handelt es sich um die <math>x_1x_2</math> -Ebene. Der Normalenvektor ist also <math>\vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} </math>. Der Normalenvektor der Ebene <math>H</math> kann abgelesen werden: <math>\vec{m} = \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix}</math>.


Einsetzen in die Formel liefert:  
Einsetzen in die Formel liefert:  
Zeile 679: Zeile 930:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:
Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:


<math>\alpha = cos^{-1}(\frac{7}{\sqrt {69}}) \Leftrightarrow \alpha \approx 32{,}57^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>H</math> beträgt ca. <math>32{,}57^{\circ}</math>.
<math>\alpha = \cos^{-1}(\frac{7}{\sqrt {69}}) \Leftrightarrow \alpha \approx 32{,}57^{\circ}</math> Der Winkel zwischen den Ebenen <math>E</math> und <math>H</math> beträgt ca. <math>32{,}57^{\circ}</math>.
   
   
|2=Lösung anzeigen|3=Lösung verbergen}}
|2=Lösung anzeigen|3=Lösung verbergen}}
Zeile 686: Zeile 937:




{{Box | Aufgabe 14: Ebenen gesucht|  
{{Box | &#x2B50; Aufgabe 19: Ebenen gesucht|  


Der Winkel zwischen den beiden Vektoren <math>\vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}</math> und <math>\vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}</math> beträgt <math>67{,}62^{\circ}</math>.  
Der Winkel zwischen den beiden Vektoren <math>\vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}</math> und <math>\vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}</math> beträgt <math>67{,}62^{\circ}</math>.  
Zeile 705: Zeile 956:




{{Box | Aufgabe 15: Bank am Wanderweg |
{{Box | &#x2B50; Aufgabe 20: Bank am Wanderweg |


An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene <math>S_1\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0{,}4 \\ 0\end{pmatrix}, r,s \in [0, 1]</math> und die Rückenlehne durch die Ebene <math>R_1\colon -x_2 + 0{,}4 x_3 = -0{,}2</math> beschrieben werden kann.
An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene <math>S\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0{,}4 \\ 0\end{pmatrix}, r,s \in [0, 1]</math> und die Rückenlehne durch die Ebene <math>R_1\colon -x_2 + 0{,}4 x_3 = -0{,}2</math> beschrieben werden kann.


'''a)''' Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen <math>100^{\circ}</math> und <math>110^{\circ}</math> liegen. Überprüfe, ob dies auf die neue Bank zutrifft.
'''a)''' Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen <math>100^{\circ}</math> und <math>110^{\circ}</math> liegen. Überprüfe, ob dies auf die neue Bank zutrifft.
Zeile 717: Zeile 968:
[[Datei:Winkel zwischen zwei Ebenen (Bankaufgabe).png|mini|Skizze: Winkel zwischen der Rückenlehne und der Sitzfläche der Bank]]
[[Datei:Winkel zwischen zwei Ebenen (Bankaufgabe).png|mini|Skizze: Winkel zwischen der Rückenlehne und der Sitzfläche der Bank]]


Als Normalenvektor der Ebene <math>S_1</math> erhält man <math>\vec{n}=\begin{pmatrix} 0 \\ 0 \\ 0{,}8 \end{pmatrix}</math> und als Normalenvektor der Ebene <math>R_1</math> <math>\vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0{,}4 \end{pmatrix}</math> .  
Als Normalenvektor der Ebene <math>S</math> erhält man <math>\vec{n}=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}</math> und als Normalenvektor der Ebene <math>R_1</math> erhält man <math>\vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0{,}4 \end{pmatrix}</math> .  


Einsetzen in die Formel liefert:  
Einsetzen in die Formel liefert:  


<math>\cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 0{,}8 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}}</math>
<math>\cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{2}{5}}{1 \cdot \sqrt{\frac{29}{25}}}</math>


Umstellen der Formel ergibt: <math> \gamma=cos^{-1} \left( \frac{\frac{8}{25}}{\frac{4}{5} \cdot \sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2^{\circ}</math>
Umstellen der Formel ergibt: <math> \gamma=\cos^{-1} \left( \frac{\frac{2}{5}}{\sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2^{\circ}</math>


Wie in der Abbildung zu sehen wurde der Winkel <math>\gamma</math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math>\alpha</math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180^\circ - \gamma </math> berechnet: <math>180^{\circ} - 68{,}2^{\circ} = 111{,}8^{\circ}</math>. Mit einem Wert von <math> 111{,}8^{\circ}</math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}}
Wie in der Abbildung zu sehen wurde der Winkel <math>\gamma</math> berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel <math>\alpha</math> beschrieben. <math>\alpha</math> erhält man, indem man <math>180^\circ - \gamma </math> berechnet: <math>180^{\circ} - 68{,}2^{\circ} = 111{,}8^{\circ}</math>. Mit einem Wert von <math> 111{,}8^{\circ}</math> liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel. |2=Lösung anzeigen|3=Lösung verbergen}}
Zeile 731: Zeile 982:
[[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]]
[[Datei:Bankaufgabe.png|mini|Skizze: Bänke am Wanderweg]]


Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche entspricht der Ebene <math> S_2\colon \vec{x} = \begin{pmatrix} 0 \\ 0{,}8 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 0{,}4 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0 \\ 0\end{pmatrix}</math> und die Rückenlehne der Ebene <math> R_2\colon -x_2 - 0{,}4 x_3 = -1 </math> Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen.
Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche kann durch die selbe Ebene beschrieben werden, wie die Sitzfläche der anderen Bank (<math>S</math>). Die Rückenlehne entspricht der Ebene <math> R_2\colon -x_2 - 0{,}4 x_3 = -1 </math> Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen.


{{Lösung versteckt|1=
{{Lösung versteckt|1=
Zeile 747: Zeile 998:
<math>\cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}</math>
<math>\cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}</math>


Umstellen der Formel ergibt: <math> \beta=cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}}
Umstellen der Formel ergibt: <math> \beta=\cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6^{\circ} </math>. Der Winkel zwischen den beiden Rückenlehnen beträgt <math>43{,}6^{\circ} </math>.|2=Lösung anzeigen|3=Lösung verbergen}}


| Arbeitsmethode | Farbe={{Farbe|grün}}}}
| Arbeitsmethode | Farbe={{Farbe|grün}}}}

Aktuelle Version vom 23. Juni 2021, 23:28 Uhr


Info

In diesem Lernpfadkapitel geht es um die Lagebeziehung zwischen einer Gerade und einer Ebene oder zwischen zwei Ebenen inklusive der Berechnung der Schnittwinkel. Das Lernpfadkapitel ist so aufgebaut, dass ihr in jedem Abschnitt zuerst grundlegende Inhalte mithilfe der Merkkästen wiederholen und anschließend euer Wissen in Übungsaufgaben anwenden könnt.


Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
  • Aufgaben und Kapitel, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!


Lagebeziehung Gerade-Ebene

Mögliche Lagebeziehungen zwischen Gerade und Ebene

Merke:

Zwischen einer Geraden und einer Ebene gibt es drei mögliche Lagebeziehungen.

Lagebeziehung Gerade Ebene schneidend.jpg

Die Gerade schneidet die Ebene.

Lagebeziehung Gerade Ebene parallel.jpg

Die Gerade und die Ebene liegen parallel.

Lagebeziehung Gerade Ebene liegtin.jpg

Die Gerade liegt in der Ebene.


Untersuchung der Lagebeziehung zwischen Gerade und Ebene

Ebene in Parameterform

Aufgabe 1: Lückentext zur Lagebeziehung zwischen Gerade und Ebene



Vorgehen: Untersuchung der Lagebeziehung zwischen Gerade und Ebene
Vorgehen Lagebeziehung Gerade und Ebene.jpg


Beispiel: Untersuchung der Lagebeziehung zwischen Gerade und Ebene


Gegeben sind eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x}=\left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right) + t \cdot \left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right) } und eine Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x}=\left( \begin{matrix} 2\\ 2\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -1\\ {-}4\\ 0 \end{matrix} \right) } . Untersuche die Lagebeziehung der Gerade und der Ebene und bestimme gegebenenfalls den Schnittpunkt.


1. Schritt: Setze die Geraden- und Ebenengleichung gleich: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right) + t \cdot \left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right) = \left( \begin{matrix} 2\\ 2\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -1\\ {-}4\\ 0 \end{matrix} \right) }


2. Schritt: Stelle das zugehörige lineare Gleichungssystem auf: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} 1-s-t=2-r \\ s=2-4r \\ t=2 \end{vmatrix} }


3. Schritt: Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s=-1, t=2, r=1 }


4. Schritt: Interpretiere die Lösung des Gleichungssystems anhand der Anzahl der Lösungen. Da das Gleichungssystem nur eine Lösung hat, besitzen die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} nur einen gemeinsamen Punkt. Also schneidet die Gerade die Ebene.


5. Schritt: Da sich die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} schneiden, kannst du den Schnittpunkt der beiden berechnen. Setze dafür den Parameter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r} in die Geradengleichung ein: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left( \begin{matrix} 2\\ 2\\ 2 \end{matrix} \right) + 1 \cdot \left( \begin{matrix} -1\\ {-}4\\ 0 \end{matrix} \right) = \left( \begin{matrix} 1\\ {-}2\\ 2 \end{matrix} \right) }

Alternativ kannst du die Parameter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} in die Ebenengleichung einsetzen und erhältst den gleichen Punkt.


Aufgabe 2: Untersuchung der Lagebeziehung zwischen Gerade und Ebene

Gegeben ist eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x}=\left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right) + t \cdot \left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right) } . Untersuche die Lagebeziehung zwischen dieser Ebene und den untenstehenden Geraden. Ziehe die Geraden in das entsprechende Feld.



1. Setze die Geradengleichung mit der Ebenengleichung gleich.

2. Stelle ein LGS auf.

3. Löse das LGS mit dem Gaußverfahren oder dem Taschenrechner.

4. Die Anzahl der Lösungen zeigt dir, wie viele gemeinsamen Punkte die Gerade und die Ebene haben. Daran kannst du die Lagebeziehung erkennen.


Aufgabe 3: Schnittpunktberechnung

Gegeben sind eine Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g: \vec{x}= \left( \begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) } und eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E: \vec{x}= \left( \begin{matrix} 4\\ 1\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 3\\ {-}2 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) } .

Zeige, dass sich die Gerade und die Ebene schneiden und gib den Schnittpunkt an.

1. Setze die Geradengleichung mit der Ebenengleichung gleich.

2. Stelle ein LGS auf.

3. Löse das LGS mit dem Gaußverfahren oder dem Taschenrechner.

4. Die Anzahl der Lösungen zeigt dir, wie viele gemeinsamen Punkte die Gerade und die Ebene haben. Daran kannst du die Lagebeziehung erkennen.

5. Berechne den Schnittpunkt, indem du den Wert für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} in die Geradengleichung einsetzt.

1. Setze die Geradengleichung mit der Ebenengleichung gleich: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left(\begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) = \left( \begin{matrix} 4\\ 1\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 3\\ {-}2 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) }

2. Stelle ein LGS auf: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} 1+2t=4+r+2s \\ t=1+3r+3s \\ 2-3t=2-2r+s \end{vmatrix} }


3. Löse das LGS mit dem Gaußverfahren oder dem Taschenrechner: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t= 1, r=1, s =-1 }


4. Die Anzahl der Lösungen zeigt dir, wie viele gemeinsame Punkte die Gerade und die Ebene haben. Da das LGS genau eine Lösung besitzt, haben die Gerade und die Ebene einen gemeinsamen Punkt. Somit schneiden sie sich.

5. Berechne den Schnittpunkt, indem du den Wert für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} in die Geradengleichung einsetzt:Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left(\begin{matrix} 1\\ 0\\ 2 \end{matrix} \right) + 1 \cdot \left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) = \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right)}


Aufgabe 4: Schatten eines Sonnensegels

Da es Frau Meier im Sommer auf ihrer Terrasse gerne schattig haben möchte, spannt sie ein dreieckiges Segeltuch auf. Die Eckpunkte des Segeltuchs sind Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A (9|{-}5|7), B (6|{-}5|7)} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle C (7|{-}10|11)} . Die Terrasse wird modelliert durch die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E: \vec{x}= \left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right) } . Die Richtung der Sonnenstrahlen entspricht dem Vektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{s} = \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)} . In welchem Bereich hat Frau Meier nun Schatten?


Hinweis: Da Frau Meier eine sehr große Terrasse hat, kannst du davon ausgehen, dass der Schatten vollständig innerhalb der Terrasse liegt.


Bestimme die Geraden der Lichtstrahlen durch die Eckpunkte des Sonnensegels und berechne, wo sie auf die Terrasse treffen. Vielleicht hilft dir eine Skizze.

Hier siehst du eine Skizze, die die oben beschriebene Situation abbildet. Überlege dir, welche Punkte du für die Aufgabe bestimmen musst.

Aufgabe Sonnensegel Spurpunkte.png
Nachdem ihr die Geraden- und Ebenengleichung gleichgesetzt habt, reicht es, wenn ihr euch die Gleichung für die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} -Koordinate anschaut.

1. Schritt: Mache eine Skizze von der Situation. Aufgabe Sonnensegel Spurpunkte.png

2. Schritt: Stelle die Geradengleichungen durch die Eckpunkte des Sonnensegels in Richtung der Sonnenstrahlen auf: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f\colon \vec{x}=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x}=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h\colon \vec{x}=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right)}

3. Schritt: Berechne die Schnittpunkte der Geraden mit der Ebene.

Berechnung von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A' } :

Setze die Geraden- und Ebenengleichung gleich: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} 9\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) }

Notiere die Zeilen der Gleichung als Gleichungssystem: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} -13+r=9-2t \\ -7+s=-5-2t \\ 0=7-10t \end{vmatrix} }

Berechne den Parameter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} , indem du die 3. Gleichung nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} umformst: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t= \frac{7}{10} }

Durch Einsetzen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} in die Geradengleichung erhältst den Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A'(-\frac{63}{5} | -\frac{32}{5} | 0)} .

Berechnung von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B'} :

Setze die Geraden- und Ebenengleichung gleich: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} 6\\ {-}5\\ 7 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) }

Notiere die Zeilen der Gleichung als Gleichungssystem: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} -13+r=6-2t \\ -7+s=-5-2t \\ 0=7-10t \end{vmatrix} }

Löse die 3. Gleichung nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} auf: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t= \frac{7}{10} }

Durch Einsetzen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} in die Geradengleichung erhältst den Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B'( -\frac{42}{5} | -\frac{32}{5} | 0 )} .

Berechnung von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle C'} :

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left( \begin{matrix} {-}13\\ {-}7\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ 0 \end{matrix} \right)+ s \cdot \left( \begin{matrix} 0\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} 7\\ {-}10\\ 11 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}2\\ {-}10 \end{matrix} \right) }

Notiere die Zeilen der Gleichung als Gleichungssystem: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} -13+r=7-2t \\ -7+s=-10-2t \\ 0=11-10t \end{vmatrix} }

Löse die 3. Gleichung nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} auf: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t= \frac{11}{10} }

Durch Einsetzen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} in die Geradengleichung erhältst den Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle C' (-\frac{77}{5} | -\frac{61}{5} | 0)} .

Die Schattenfläche wird also durch das Dreieck mit den Eckpunkten Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A'(-\frac{63}{5} | -\frac{32}{5} | 0), B'( -\frac{42}{5} | -\frac{32}{5} | 0 )} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle C' (-\frac{77}{5} | -\frac{61}{5} | 0)} begrenzt.

⭐Ebene in Koordinatenform

⭐Merke: Die Lagebeziehung einer Gerade und einer Ebene mit dem Normalenvektor untersuchen

Bei der Bestimmung der Lagebeziehung zwischen einer Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und einer Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} kann dir der Normalenvektor der Ebene helfen. Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in das Kapitel Ebenen im Raum.

Lagebeziehung Gerade Ebene parallel Normalenvektor.jpg

Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene orthogonal zueinander sind und Gerade und Ebene keinen gemeinsamen Punkt besitzen, so sind sie parallel zueinander.

Lagebeziehung Gerade Ebene liegtin Normalenvektor.jpg

Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene orthogonal zueinander sind und Gerade und Ebene unendlich viele gemeinsame Punkte besitzen, so liegt die Gerade in der Ebene.

Lagebeziehung Gerade Ebene schneidend Normalenvektor.jpg

Wenn der Richtungsvektor der Gerade und der Normalenvektor der Ebene nicht orthogonal zueinander sind, dann schneiden sich die Gerade und die Ebene und es kann ein Schnittpunkt bestimmt werden.


⭐Vorgehen: Untersuchung der Lagebeziehung zwischen Gerade und Ebene mit dem Normalenvektor

Gegeben sind eine Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g: \vec{x}=\vec{a}+r\cdot\vec{u}} und eine Ebene mit dem Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} .

Vorgehen Lagebeziehung Gerade und Ebene3.jpg.jpg


⭐ Aufgabe 5: Untersuchung der Lagebeziehung einer Gerade und einer Ebene in Koordinatenform


a) Gegeben sind eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon 2x_1 + x_2 - x_3 = 5 } und eine Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) } . Bestimme die Lagebeziehung von Gerade und Ebene.


1. Schritt: Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.

Verwende des Skalarprodukt.
Wenn das Skalarprodukt zweier Vektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} ist, dann sind sie nicht orthogonal.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{u} = \left( \begin{matrix} 2\\ 1\\ {-}1 \end{matrix} \right) \ast \left( \begin{matrix} -3\\ 5\\ {-}1 \end{matrix} \right) = 2 \cdot (-3) + 1 \cdot 5 -1 \cdot (-1) = 0} . Da das Skalarprodukt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0 } ergibt, gilt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \perp \vec{u}} .


2. Schritt: Prüfe durch eine Punktprobe, ob der Aufpunkt der Gerade in der Ebene liegt.


Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2 \cdot 3 -2 =4 \neq 5}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow} Der Aufpunkt liegt nicht in der Ebene. Daher verlaufen die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g } und die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} parallel zueinander.


b) Gegeben sind eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon x_1 + 2x_2 + 3x_3 = 5 } und eine Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x}=\left( \begin{matrix} 4\\ {-}7\\ 5 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 4\\ {-}3 \end{matrix} \right) } . Bestimme die Lagebeziehung von Gerade und Ebene.

1. Schritt: Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.

Verwende des Skalarprodukt.
Wenn das Skalarprodukt zweier Vektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} ist, dann sind sie nicht orthogonal.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{u} = \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) \ast \left( \begin{matrix} 4\\ {-}7\\ 5 \end{matrix} \right) = 1 \cdot 4 + 2 \cdot (-7) +3 \cdot 5 = 0} . Da das Skalarprodukt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0 } ergibt, gilt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \perp \vec{u}} .


2. Schritt: Prüfe durch eine Punktprobe, ob der Aufpunkt der Gerade in der Ebene liegt.


Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4+2 \cdot (-7) +3 \cdot 5 =5}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow} Der Aufpunkt liegt in der Ebene. Daher liegt die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g } in der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} .

c) Gegeben sind eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon x_1 - 2x_2 + x_3 = -3 } und eine Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x}=\left( \begin{matrix} 4\\ 3\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -2\\ \frac{3}{2}\\ 1 \end{matrix} \right) } . Bestimme die Lagebeziehung von Gerade und Ebene.

1. Schritt: Prüfe, ob der Richtungsvektor der Gerade orthogonal zum Normalenvektor der Ebene liegt.

Verwende des Skalarprodukt.
Wenn das Skalarprodukt zweier Vektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} ergibt, dann sind die beiden Vektoren orthogonal zueinander. Wenn das Skalarprodukt ungleich Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} ist, dann sind sie nicht orthogonal.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{u} = \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) \ast \left( \begin{matrix} -2\\\frac{3}{2} \\1 \end{matrix} \right) = 1\cdot -2-2 \cdot \frac{3}{2} + 1 \cdot 1= -4} . Da das Skalarprodukt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -4 \neq 0 } ergibt, sind Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u}} nicht orthogonal zueinander. Somit schneiden sich die Gerade und die Ebene.


2. Schritt: Berechne des Schnittpunktes.

Setze die Koordinaten der Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} in die Ebenengleichung von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} ein und forme nach dem Parameter um.

Die einzelnen Koordinaten der Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} sind: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1=4-2r, x_2=3+\frac{3}{2}r, x_3=2+r} .

Setze diese Koordinaten in die Ebenengleichung von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} ein: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4-2r-2\cdot(3+\frac{3}{2}r)+2+r=-3}

Forme nach dem Parameter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r} um: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 4-2r-6-3r+2+r=-3 \Leftrightarrow r=\frac{3}{4}}

Setze den Parameter in die Geradengleichung ein, um den Schnittpunkt zu berechnen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left( \begin{matrix} 4\\ 3\\ 2 \end{matrix} \right) + \frac{3}{4} \cdot \left( \begin{matrix} -2\\ \frac{3}{2}\\ 1 \end{matrix} \right)=\left(\begin{matrix} \frac{10}{4}\\ \frac{33}{8}\\ \frac{11}{4} \end{matrix} \right)} .

Die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} schneiden sich im Schnittpunkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S(\frac{10}{4}|\frac{33}{8}|\frac{11}{4})} .



⭐ Aufgabe 6: Bestimme den Parameter

Gegeben ist eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon -2x_1 + 3x_2 - x_3 = 3} . Bestimme Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle l} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle m} in den folgenden Geraden so, dass die jeweils angegebene Lagebeziehung erfüllt ist.

a) Die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x} = \left( \begin{matrix} 5\\ 3\\ 0 \end{matrix} \right) + r \cdot \left( \begin{matrix} \frac{1}{2}\\ 3\\ m \end{matrix} \right)} soll parallel zur Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} verlaufen.

Damit die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} parallel zueinander sind, müssen der Richtungsvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und der Normalenvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} orthogonal zueinander sein.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u} \ast \vec{n} = \left( \begin{matrix} \frac{1}{2}\\ 3\\ m \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 8-m } .

Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} sein: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 8-m = 0 \Rightarrow m = 8} .

b) Die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle h\colon \vec{x} = \left( \begin{matrix} l\\\frac{51}{10}\\ \frac{2}{5} \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right)} soll in der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} liegen.

Damit die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} in der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} liegt, müssen der Richtungsvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und der Normalenvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} orthogonal zueinander sein.
Wenn die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} in der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} liegt, liegt jeder Punkt auf der Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} auch in der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} .
Prüfe mit der Punktprobe, ob der Aufpunkt von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} in der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} liegt.

Finde zuerst m: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u} \ast \vec{n} = \left( \begin{matrix} 3\\ m\\ \frac{18}{5} \end{matrix} \right) \ast \left( \begin{matrix} -2\\ 3\\ {-}1 \end{matrix} \right) = 3m - \frac{48}{5}} . Damit die beiden Vektoren orthogonal zueinander sind, muss das Skalarprodukt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} sein: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 3m - \frac{48}{5} = 0 \Rightarrow m = \frac{16}{5}} .

Finde danach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle l} durch eine Punktprobe: Setze den Aufpunkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A (l | \frac{51}{10}| \frac{2}{5})} in die Ebenengleichung ein und löse nach Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle l} auf: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -2l + 3 \cdot \frac{51}{10} - \frac{2}{5}= 3 \Leftrightarrow l = \frac{119}{20}} .

c) Die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle i\colon \vec{x} = \left( \begin{matrix} 3\\ 0\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} m\\ 5\\ {-}1 \end{matrix} \right)} soll die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} schneiden.

Der Richtungsvektor der Geraden darf nicht orthogonal zum Normalenvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} liegen.
Was bedeutet es für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle m} , wenn der Richtungsvektor der Geraden nicht orthogonal zum Normalenvektor der Ebene liegen darf?
Bestimme, welchen Wert Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle m} nicht annehmen darf, damit die Gerade die Ebene schneidet.
Für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle m = 8 } ist der Richtungsvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} orthogonal zum Normalenvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} liegt parallel zur Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} . Jeder andere Wert für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle m} ist eine richtige Lösung.


⭐ Aufgabe 7: Flugzeug

Ein Flugzeug fliegt auf eine Nebelwand zu. Seine Flugbahn wird durch die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j\colon \vec{x} = \left( \begin{matrix} 10\\ 23 \\ 10 \end{matrix} \right) + t \cdot \left( \begin{matrix} -2\\ {-}5\\ 0 \end{matrix} \right)} beschrieben, wobei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} die Zeit in Minuten nach dem Start bezeichnet. Das Flugzeug befindet sich also im Moment am Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle P(10/23/10) } . Du kannst davon ausgehen, dass es mit konstanter Geschwindigkeit fliegt. Die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E: 2x_1+x_2=-2 } beschreibt die Nebelwand.

Versuche die folgenden Aufgaben ohne Taschenrechner zu lösen.

a) Begründe, dass das Flugzeug die Nebelwand trifft.

Verwende das Skalarprodukt.
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{u} = \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right) \ast \left( \begin{matrix} -2\\ {-}5\\ 0 \end{matrix} \right) = 2 \cdot (-2) + 1 \cdot (-5) +0 \cdot 0 = -9} . Da das Skalarprodukt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -9 \neq 0 } ergibt, sind der Normalenvektor der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und der Richtungsvektor der Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle j} nicht orthogonal zueinander. Daraus können wir schließen, dass sich Gerade und Ebene schneiden. Das Flugzeug trifft also auf die Nebelwand.

b) Wo trifft das Flugzeug auf die Nebelwand und wie viele Minuten dauert es noch, bis das Flugzeug die Nebelwand erreicht?

Berechne den Schnittpunkt der Gerade mit der Ebene, indem du die einzelnen Koordinaten der Gerade in die Ebenengleichung einsetzt.

Setze die einzelnen Koordinaten der Gerade in die Ebenengleichung ein und löse nach dem Parameter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} auf: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2 \cdot (10-2t)+23-5t= -2 \Leftrightarrow 20-4t+23-5t =-2 \Leftrightarrow -9t=-45\Leftrightarrow t=5}

Da Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} die Zeit in Minuten angibt, erreicht das Flugzeug den Schnittpunkt in 5 Minuten.

Berechne nun den Schnittpunkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S} , indem du Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} in die Geradengleichung einsetzt. Du erhältst den Ortsvektor zum Schnittpunkt und kannst den Schnittpunkt dann ablesen: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left( \begin{matrix} 10\\ 23 \\10 \end{matrix} \right) + 5 \cdot \left( \begin{matrix} -2\\ {-}5\\ 0 \end{matrix} \right)} Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle = \left( \begin{matrix} 0\\{-}2\\ 10 \end{matrix}\right)=\left( \begin{matrix} 0\\-2\\ 10 \end{matrix} \right)} . Damit ergibt sich der Schnittpunkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S(0|-2|10)} .

Das Flugzeug trifft die Nebelwand in 5 Minuten im Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S(0|-2|10)} .


⭐Berechnung des Winkels zwischen Gerade und Ebene

⭐ Merke: Berechnung des Winkels zwischen Gerade und Ebene


Wenn eine Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} schneidet, kannst du nicht nur den Schnittpunkt berechnen, sondern auch den Schnittwinkel. Dafür benötigen wir den Normalenvektor. Wenn du nicht mehr genau weißt, wie man diesen abliest oder berechnet, schau noch einmal in das Kapitel Ebenen im Raum (Ebenen im Raum).


⭐ Merksatz: Winkel berechnen zwischen Gerade und Ebene


Winkel zwischen Gerade und Ebene

Sei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} eine Ebene mit dem Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} eine Gerade mit dem Richtungsvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u}} . Der Schnittwinkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} zwischen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} kann mit folgender Formel berechnet werden: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sin(\alpha)=\frac{|\vec{n} \ast \vec{u}|}{|\vec{n}| \cdot |\vec{u}|}} .

Ist nach dem Schnittwinkel gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von Gerade und Ebene eingeschlossen werden. Mit der obigen Formel erhält man deshalb für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} immer Werte zwischen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0^{\circ}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 90^{\circ}} .

Wenn du wissen möchtest, warum du nicht - wie beim Winkel zwischen zwei Geraden - den Kosinus benutzt, kannst du das hier nachlesen:

Winkel zwischen Gerade und Ebene

Der Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} einer Ebene steht in einem Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 90^{\circ} } Winkel zur Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} .

Wenn man den Winkel zwischen einer Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und einer Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} berechnen will, kann wie beim Winkel zwischen zwei Geraden mit der Kosinusfunktion der Winkel zwischen dem Richtungsvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und dem Normalenvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} berechnet werden. In der Abbildung ist dieser Winkel mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} bezeichnet. Um nun den Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} zwischen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} zu erhalten, müssen wir Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta} von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 90^\circ } abziehen. Dies entspricht aufgrund trigonometrischer Gesetzmäßigkeiten der obigen Formel mit der Sinusfunktion.


⭐ Aufgabe 8: Berechnung des Winkels zwischen Gerade und Ebene


Gegeben sind die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x}=\left( \begin{matrix} {-}1\\ 3\\ 6 \end{matrix} \right) + r \cdot \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right) } und die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon 2x_1 + x_2 + 4 x_3 = {-}27} . Bestimme den Winkel, unter dem sich die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} schneiden.

Nutze zur Berechnung des Winkels die Formel aus dem Merksatz. Notiere dafür den Richtungsvektor der Gerade und den Normalenvektor der Ebene.

Wenn du beide in die Formel eingesetzt hast, benötigst du den Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sin^{-1}} , um den Winkel ausrechnen zu können.

1. Schritt: Notiere den Richtungvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u}} der Gerade und den Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} der Ebene.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u}= \left( \begin{matrix} 8\\ 2\\ 0 \end{matrix} \right)} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}= \left( \begin{matrix} 2\\ 1\\ 4 \end{matrix} \right)}

2. Schritt: Setze die Vektoren in die Formel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sin(\alpha)=\frac{ |\vec{n} \ast \vec{u}|}{|\vec{n}| \cdot |\vec{u}|}} ein. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sin(\alpha)=\frac{ \left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \ast \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ 1\\ 4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 8\\ 2\\ 0 \end{pmatrix} \right|} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{60} \cdot \sqrt{21}} \Leftrightarrow \sin(\alpha)=\frac{18}{\sqrt{1260}}}

3. Schritt: Forme die Gleichung um.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha = \sin^{-1}(\frac{18}{\sqrt{1260}}) \Leftrightarrow \alpha \approx 28{,}45^{\circ}}

Der Schnittwinkel beträgt also Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 28{,}45^{\circ}} .


⭐ Aufgabe 9: Trinkpäckchen


Trinkpäckchen

Eine Schulklasse nimmt auf ihrem Wandertag Trinkpäckchen mit. Jedes Trinkpäckchen hat die Form eines Quaders (siehe Abbildung). Die Seite, auf der sich das Loch für den Strohhalm befindet, kann durch die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon x_1=5} beschrieben werden. Einige Kinder ärgern sich, dass sie mit dem Strohhalm nicht gut in die Ecken kommen. Sie wollen den Winkel berechnen, unter dem sie den Strohhalm in das Trinkpäckchen stecken müssen, um an den Saft in der gegenüberliegenden Ecke zu kommen.

Wenn der Strohhalm so in das Trinkpäckchen gesteckt wird, das er in der gegenüber liegenden Ecke anstößt, kann er durch die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} veranschaulicht werden: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x} = \begin{pmatrix} 5\\ 2\\ 11 \end{pmatrix} + t \cdot \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}} .

Kannst du den Kindern helfen, den Winkel zu berechnen, unter dem der Strohhalm in das Trinkpäckchen gesteckt werden muss, um die gegenüberliegende Ecke zu erreichen?

Überlege, wie dir der obige Merksatz helfen kann.

Gesucht wird der Winkel zwischen der Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} und der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} . Der Richtungsvektor der Gerade ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u} = \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix}} . Der Normalenvektor der Ebene kann abgelesen werden: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}} .

Einsetzen der Vektoren in die Formel liefert:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sin(\alpha)=\frac{ \left| \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix} \ast \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} \right|}{\left| \begin{pmatrix} {-}5\\ 6\\ {-}11 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} \right|} \Leftrightarrow \sin(\alpha)=\frac{5}{\sqrt{1} \cdot \sqrt{25+36+121}} \Leftrightarrow \sin(\alpha)=\frac{1}{\sqrt{182}}}

Mithilfe des Taschenrechners kann das Ergebnis berechnet werden:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha = \sin^{-1}(\frac{1}{\sqrt{182}}) \Leftrightarrow \alpha \approx 21{,}75^{\circ}}

Die Kinder sollten den Strohhalm also in einem Winkel von ca. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 21{,}75^{\circ}} in das Trinkpäckchen stecken, um an den Saft in der gegenüberliegenden Ecke zu kommen.


⭐ Aufgabe 10: Gerade gesucht


Bisher wurde mit der Formel zur Winkelberechnung nur der Winkel berechnet. Die Formel kann jedoch auch genutzt werden, um bei einem vorgegebenen Winkel die Lage der Gerade oder Ebene zu bestimmen.

Eine Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} soll die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1x_2} -Ebene in einem Winkel von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 45^{\circ}} schneiden. Über die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} ist nur bekannt, dass sie durch den Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle P (1|2|3)} und in Richtung des Vektors Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{x}=\begin{pmatrix} 3\\ 6\\ z \end{pmatrix}, z > 0 } verläuft. Stelle die Gleichung der Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} auf, indem du den Parameter Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z} bestimmst.

Notiere dir alle Informationen aus dem Text. Was weißt du über die Berechnung des Winkels zwischen einer Gerade und einer Ebene?
Der Normalenvektor der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1x_2} -Ebene verläuft nur in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} -Richtung.
Um Gleichungen mit einer Unbekannten zu lösen, kannst du die nSolve-Funktion deines Taschenrechners nutzen.

Bestimme zuerst den Normalenvektor der Ebene. Da es sich um die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1x_2} -Ebene handelt, lautet der Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}=\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}} .

Nun können der Normalenvektor der Ebene, der Richtungsvektor der Gerade und der vorgegebene Winkel in die Formel eingesetzt werden: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \sin(45^{\circ})=\frac{ \left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 3\\ 6\\ z \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 3\\ 6\\ z \end{pmatrix} \right|} \Leftrightarrow \sin(45^{\circ})=\frac{|z|}{\sqrt{1} \cdot \sqrt{9+36 + z^{2}}} \Leftrightarrow \sin(45^{\circ})=\frac{|z|}{\sqrt{45+z^{2}}}}

Löst man die Gleichung mithilfe des Taschenrechners, erhält man das Ergebnis: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle z=3 \sqrt{5} \approx 6{,}71} .

Somit kann im letzten Schritt die Gerade Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g} aufgestellt werden. Man erhält Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x} = \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 3\\ 6\\ {3 \sqrt{5}} \end{matrix} \right)} .


Lagebeziehung Ebene-Ebene

Mögliche Lagebeziehungen zwischen zwei Ebenen

Merke:

Zwischen zwei Ebenen gibt es drei mögliche Lagebeziehungen:

Lagebeziehung zweier Ebenen (schneidend).png

Die Ebenen schneiden sich in einer Schnittgeraden.

Lagebeziehung zweier Ebenen (parallel).png

Die Ebenen sind parallel.

Lagebeziehung zweier Ebenen (identisch).png

Die Ebenen sind identisch.

Untersuchung der Lagebeziehung von zwei Ebenen

Beide Ebenengleichungen in Parameterform

Aufgabe 11: Lückentext zur Lagebeziehung zwischen Ebene und Ebene




Merke: Lagebeziehung von zwei Ebenen in Parameterform untersuchen.
Vorgehen bei der Untersuchung der Lagebeziehung zweier Ebenen in Parameterform.jpg


Aufgabe 12: Untersuchung der Lagebeziehung von zwei Ebenen in Parameterform


a) Gegeben sind eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x}=\left( \begin{matrix} 1\\ 4\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) + t \cdot \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right) } und eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ {-}2 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 5\\ 4\\ {-}3 \end{matrix} \right)} . Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.

1. Schritt: Setze die beiden Ebenengleichungen gleich.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left( \begin{matrix} 1\\ 4\\ 0 \end{matrix} \right) + s \cdot \left( \begin{matrix} 1\\ {-}2\\ 1 \end{matrix} \right) + t \cdot \left( \begin{matrix} 3\\ 1\\ {-}1 \end{matrix} \right)= \left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ {-}2 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 5\\ 4\\ {-}3 \end{matrix} \right)}


2. Schritt: Stelle das zugehörige lineare Gleichungssystem auf.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} 1+s+3t=1+2r+5u \\ 4-2s+t=2+3r+4u \\ s-t=3-2r-3u \end{vmatrix} \Leftrightarrow \begin{vmatrix} s+3t-2r+5u=0 \\ {-}2s+t-3r-4u=-2 \\ s-t+2r+3u=3 \end{vmatrix}}

3. Schritt: Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:

Mithilfe des Gaußverfahrens:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} s+3t-2r-5u=0 \\ 7t-7r-14u=-2 \\ 0=-13\end{vmatrix}}

Mithilfe des Taschenrechners:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle linSolve\begin{pmatrix}\begin{cases} s+3t-2r-5u=0 \\ {-}2s+t-3r-4u=-2, \{s,t,r,u\}\\ s-t+2r+3u=3\end{cases} \end{pmatrix}}

"Keine Lösung gefunden"

4. Schritt: Interpretiere die Lösung des Gleichungssystems:

In der dritten Zeile der Lösungsmatrix befindet sich ein Widerspruch, sodass das LGS keine Lösung besitzt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L=\{\}} . Der Taschenrechner zeigt diese Interpretation direkt unterhalb der Lösungsmatrix an. Die beiden Ebenen sind somit parallel.

b) Gegeben sind eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right) } und eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon \vec{x}=\left( \begin{matrix} 1\\ 3\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 4\\ 1\\ 3 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 2\\ 4\\ 3 \end{matrix} \right)} . Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.


1. Schritt: Setze die beiden Ebenengleichungen gleich.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + r \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right)= \left( \begin{matrix} 1\\ 3\\ 2 \end{matrix} \right) + t \cdot \left( \begin{matrix} 4\\ 1\\ 3 \end{matrix} \right)+ u \cdot \left( \begin{matrix} 2\\ 4\\ 3\end{matrix} \right)}

2. Schritt: Stelle das zugehörige lineare Gleichungssystem auf.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} 1+2r+3s=1+4t+2u \\ 2+3r+2s=3+t+4u \\ 5+r+4s=2+3t+3u \end{vmatrix} \Leftrightarrow \begin{vmatrix} 2r+3s-4t-2u=0 \\ 3r+2s-t-4u=1 \\ r+4s-3t-3u=-3 \end{vmatrix}}

3. Schritt: Löse das Gleichungssystem mit dem Gaußverfahren oder dem Taschenrechner:

Mithilfe des Gaußverfahrens:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} r+\frac{3}{2}s-2t-u=0 \\ s-2t+\frac{2}{5}u=-\frac{2}{5} \\ t-\frac{3}{4}u=-\frac{1}{2} \end{vmatrix}}

Mithilfe des Taschenrechners:

linSolveFehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix}\begin{cases} 2r+3s-4t-2u=0 \\ 3r+2s-t-4u=1, \{r,s,t,u\}\\ r+4s-3t-3u=-3\end{cases} \end{pmatrix}}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \{\frac{17c1}{20}+\frac{11}{10},\frac{11c1}{10}-\frac{7}{5},\frac{3c1}{4}-\frac{1}{2}\}}

4. Schritt: Interpretiere die Lösung des Gleichungssystems:

Die Lösungsmenge beträgt:Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle L=\{\frac{17c1}{20}+\frac{11}{10},\frac{11c1}{10}-\frac{7}{5},\frac{3c1}{4}-\frac{1}{2}\}} . Die beiden Ebenen schneiden sich in einer Schnittgeraden.

5. Schritt: Bestimme die Schnittgerade:

Stelle die dritte Gleichung zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} um:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t=\frac{3}{4}u-\frac{1}{2}}

Setze Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} in die zweite Gleichung ein und stelle zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s} um:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s=\frac{11}{10}u-\frac{7}{5}}

Setze Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s} in die erste Gleichung ein und stelle zu Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r} um:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r=\frac{17}{20}u-\frac{11}{10}}

Setze Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s} in die Ebenengleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} ein:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + (\frac{17}{20}u-\frac{11}{10}) \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + (\frac{11}{10}u-\frac{7}{5}) \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right)}

Stelle die Schnittgerade auf:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x}=\left( \begin{matrix} \frac{27}{5}\\ {-}\frac{9}{2}\\ {-}\frac{17}{10} \end{matrix} \right) + t \cdot \left( \begin{matrix} 5\\ \frac{19}{4}\\ \frac{21}{4} \end{matrix} \right) }

Setze die Werte für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s} aus der Lösungsmenge in die Ebenengleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} ein:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x}=\left( \begin{matrix} 1\\ 2\\ 5 \end{matrix} \right) + (\frac{17}{20}u-\frac{11}{10}) \cdot \left( \begin{matrix} 2\\ 3\\ 1 \end{matrix} \right) + (\frac{11}{10}u-\frac{7}{5}) \cdot \left( \begin{matrix} 3\\ 2\\ 4 \end{matrix} \right)}

Stelle die Schnittgerade auf:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x}=\left( \begin{matrix} \frac{27}{5}\\ {-}\frac{9}{2}\\ {-}\frac{17}{10} \end{matrix} \right) + t \cdot \left( \begin{matrix} 5\\ \frac{19}{4}\\ \frac{21}{4} \end{matrix} \right) }


Aufgabe 13: Ergebnisse interpretieren


Zur Untersuchung der Lagebeziehung zweier Ebenen, wurden die Ebenengleichungen gleichgesetzt und das zugehörige Gleichungssystem aufgestellt. Betrachte die Ausgabe des Taschenrechners und interpretiere die jeweilige Situation geometrisch ohne nachzurechnen.

a) 

linSolveFehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix}\begin{cases} r-0{,}5u=0{,}5\\ s-u=0{,}5, \{r,s,t,u\}\\ t-1{,}5u=1\end{cases} \end{pmatrix}}

                     Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \{0{,}5c2+0{,}5,c2+0{,}5,1{,}5c2+1,c2\}}


Das Gleichungssystem besitzt unendlich viele Lösungen. Da nur einer der Parameter frei wählbar ist, schneiden sich die beiden Ebenen in einer Schnittgeraden.

b) 

linSolveFehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix}\begin{cases} r-t-u=2\\ s-t-3u=-5, \{r,s,t,u\}\\ r-s+2u=2\end{cases} \end{pmatrix}}

                      "Keine Lösung gefunden"
Das Gleichungssystem besitzt keine Lösung. Die Ebenen liegen somit parallel zueinander.

c) 

linSolveFehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix}\begin{cases} 3r-1{,}5s+6t-0{,}9u=0\\ {-}r+0{,}5s-2t+0{,}3u=0, \{r,s,t,u\}\\{-}1{,}5r+\frac{3}{4}s-3t-0{,}45=0\end{cases} \end{pmatrix}}

                      Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \{-2c4+0{,}5c5-0{,}3,c5,c4,-1\}}

Das Gleichungssystem besitzt unendlich viele Lösungen. Da zwei Parameter frei wählbar sind, sind die beiden Ebenen identisch.

⭐Ebenengleichungen in Parameter- und Koordinatenform

⭐Merke: Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform untersuchen

Seien durch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x}=\vec{a}+r\cdot\vec{u}+s\cdot\vec{v}} eine Ebene in Parameterform und durch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon n_1x_1+n_2x_2+n_3x_3=d} eine Ebene in Koordinatenform gegeben. Zur Untersuchung ihrer Lagebeziehung kannst du entsprechend des folgenden Schemas vorgehen:

Vorgehen zur Untersuchung der Lagebeziehung von zwei Ebenen.jpg


⭐Aufgabe 14: Untersuchung der Lagebeziehung von einer Ebene in Parameterform und einer Ebene in Koordinatenform


a) Gegeben sind eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x}=\left( \begin{matrix} 2\\ 1\\ {-}3 \end{matrix} \right) + r \cdot \left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)} und eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon -1{,}5x_1+3x_2-1{,}5x_3=4{,}5} . Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.


1. Schritt: Prüfe, ob die Richtungsvektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{v}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} orthogonal zum Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} liegen:

Betrachte das Skalarprodukt der Richtungsvektoren und des Normalenvektors.

Es muss gelten, dass Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{u}=0} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{v}=0} .

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{u}=\left( \begin{matrix} {-}1{,}5\\ 3\\ {-}1{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 1\\ 0\\ {-}1 \end{matrix} \right)=-1{,}5+0+1{,}5=0}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{v}=\left( \begin{matrix} -1{,}5\\ 3\\ {-}1{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 2\\ 1\\ 0 \end{matrix} \right)=-3+3+0=0}


2.Schritt: Interpretiere die Lösung der Skalarprodukte:

Da beide Skalarprodukte der jeweiligen Vektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.


3. Schritt: Überprüfe die Lagebeziehung mithilfe der Punktprobe:

Verwende für die Punktprobe den Aufpunkt der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} .

Setze den Aufpunkt der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} in die Ebenengleichung der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} ein.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -1{,}5\cdot2+3\cdot1-1{,}5\cdot(-3)=4{,}5\checkmark}


4. Schritt: Interpretiere die Lösung der Punktprobe:

Da der Aufpunkt die Koordinatengleichung von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} erfüllt, liegt der Aufpunkt in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} . Da wir bereits wissen, dass die Ebenen entweder parallel oder identisch sind, haben wir damit gezeigt, dass Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} identisch sind.


b) Gegeben sind eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x}=\left( \begin{matrix} 8\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right) + s \cdot \left( \begin{matrix} 5\\ 0\\ {-}1 \end{matrix} \right)} und eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon x_1-x_2+3x_3=12} . Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.


1. Schritt: Prüfe, ob die Richtungsvektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{v}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} orthogonal zum Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} liegen:

Betrachte das Skalarprodukt der Richtungsvektoren und des Normalenvektors.

Es muss gelten, dass Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{u}=0} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{v}=0} .

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{u}=\left( \begin{matrix} 1\\ {-}1\\ 3 \end{matrix} \right)\ast\left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right)=-4-1+3=-2}


2.Schritt: Interpretiere die Lösung der Skalarprodukte:

Da das Skalarprodukt des ersten Richtungsvektors bereits Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \neq0} ist, braucht man das Skalarprodukt des zweiten Richtungsvektors nicht mehr zu berechnen. Du kannst nun direkt folgern, dass sich die Ebenen in einer Schnittgeraden schneiden.

3. Schritt: Bestimme die Schnittgerade:

Schreibe mithilfe der Ebenengleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} die Gleichungen für die einzelnen Koordinaten auf.
Setze die Werte für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1,x_2} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} in die Ebenengleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} ein.
Setze Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s} in die Ebenengleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} ein, um anschließend die Geradengleichung aufstellen zu können.

Durch Umformen der Ebenengleichung erhält man:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1=8-4r+5s} ,Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2=r} ,Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3=2+r-s}

Einsetzen der Werte in die Ebenengleichung ergibt:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (8-4r+5s)-r+3(2+r-s)=12\Leftrightarrow s=r-1}

Einsetzen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s} in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} ergibt:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x}=\left( \begin{matrix} 8\\ 0\\ 2 \end{matrix} \right) + r \cdot \left( \begin{matrix} -4\\ 1\\ 1 \end{matrix} \right) + (r-1) \cdot \left( \begin{matrix} 5\\ 0\\ {-}1 \end{matrix} \right)}

Nun kannst du die Geradengleichung aufstellen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x}=\left( \begin{matrix} 3\\ 0\\ 3 \end{matrix} \right) + t \cdot \left( \begin{matrix} 1\\ 1\\ 0 \end{matrix} \right)}


⭐Aufgabe 15: Lagebeziehungen untersuchen.


Untersuche die Lagebeziehung der jeweiligen Ebenen. Falls sich die Ebenen in einer Schnittgerade schneiden, brauchst du diese nicht zu berechnen.


a) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ {-}1 \\ 2 \end{pmatrix}+ s \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon 7x_1+x_2-3x_3-8=0}

Prüfe, ob die Richtungsvektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{v}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} orthogonal zum Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} liegen.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{u}=\left( \begin{matrix} 0\\ {-}1\\ 2 \end{matrix} \right)\ast\left( \begin{matrix} 7\\ 1\\ {-}3 \end{matrix} \right)=-7}

Da das Skalarprodukt des ersten Richtungsvektors bereits Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \neq0} ist, braucht man das Skalarprodukt des zweiten Richtungsvektors nicht mehr zu berechnen. Du kannst nun direkt folgern, dass sich die Ebenen in einer Schnittgeraden schneiden.

b) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x} = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ {-}1 \\ 3 \end{pmatrix}+ s \cdot \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix}}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon -3x_1-9x_2-x_3=5 }

Prüfe, ob die Richtungsvektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{v}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} orthogonal zum Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} liegen.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{u}=\left( \begin{matrix} 2\\ {-}1\\ 3 \end{matrix} \right)\ast\left( \begin{matrix} {-}3\\ {-}9\\ {-}1 \end{matrix} \right)=0}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{v}=\left( \begin{matrix} {-}1\\ 0\\ 3\end{matrix} \right)\ast\left( \begin{matrix} {-}3\\ {-}9\\ {-}1 \end{matrix} \right)=0}

Da beide Skalarprodukte der jeweiligen Vektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.

Punktprobe:Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle -3\cdot({-}3)-9\cdot1-0=-18\neq5}

Da die Koordinatengleichung Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} nicht erfüllt wird, liegen die Ebenen parallel zueinander.

c) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x} = \begin{pmatrix} 2 \\ {-}1 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 0 \\ {-}0{,}5 \end{pmatrix}+ s \cdot \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon 2x_1-2x_2-4x_3=-6}

Prüfe, ob die Richtungsvektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{u}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{v}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} orthogonal zum Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} liegen.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{u}=\left( \begin{matrix} -1 \\ 0 \\ {-}0{,}5 \end{matrix} \right)\ast\left( \begin{matrix} 2\\ {-}2\\ {-}4 \end{matrix} \right)=0}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} \ast \vec{v}=\left( \begin{matrix} 4 \\ 2 \\ 1 \end{matrix} \right)\ast\left( \begin{matrix} 2\\ {-}2\\ {-}4 \end{matrix} \right)=0}

Da beide Skalarprodukte der jeweiligen Vektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0} sind, liegt der Normalenvektor orthogonal zu beiden Richtungsvektoren. Das bedeutet, dass die Ebenen sich nicht in einer Schnittgeraden schneiden, sondern entweder identisch oder parallel sind.

Punktprobe:Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2\cdot2-2\cdot(-1)-3\cdot4=-6\checkmark}

Da die Koordinatengleichung von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} erfüllt wird, liegt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} und die Ebenen sind identisch.

⭐Beide Ebenengleichungen in Koordinatenform

⭐Merke: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform

Seien durch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon n_1x_1+n_2x_2+n_3x_3=d} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon m_1x_1+m_2x_2+m_3x_3=e} zwei Ebenen in Koordinatenform gegeben. Zur Untersuchung ihrer Lagebeziehung kannst du entsprechend des folgenden Schemas vorgehen:

Lagebeziehung von Ebenen in Koordinatenform.jpg


⭐Beispiel: Untersuchung der Lagebeziehung von zwei Ebenen in Koordinatenform


Gegeben sind eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon 3x_1-4x_2-x_3=4} und eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon 3x_1-3x_2+x_3=3} . Untersuche die Lagebeziehung der beiden Ebenen und berechne gegebenenfalls die Schnittgerade.

1. Schritt: Prüfe, ob der Normalenvektor Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} ein Vielfaches des Normalenvektors Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{m}} der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} ist.

Bei der Betrachtung der Normalenvektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}=\left( \begin{matrix} 3\\ {-}4\\ {-}1 \end{matrix} \right)} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{m}=\left( \begin{matrix} 3\\ {-}3\\ 1 \end{matrix} \right) } fällt direkt auf, dass die beiden Vektoren keine Vielfachen voneinander sind. Man kann also direkt schließen, dass sich die beiden Ebenen in einer Schnittgeraden schneiden. Ein formaler Nachweis würde wie folgt aussehen:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r\cdot\vec{n}=\vec{m} \Leftrightarrow r\cdot\left( \begin{matrix} 3\\ {-}4\\ {-}1 \end{matrix} \right)=\left( \begin{matrix} 3\\ {-}3\\ 1 \end{matrix} \right) \Leftrightarrow \begin{vmatrix} 3r=3\\ {-}4r=-3 \\ {-}r=1 \end{vmatrix}}

Da das LGS nicht lösbar ist, sind die Vektoren keine Vielfachen voneinander und die Ebenen schneiden sich in einer Schnittgeraden.

2. Schritt: Bestimme die Schnittgerade.

Stelle mit den beiden Ebenengleichungen ein LGS auf und löse es mithilfe des Gauß-Algorithmus oder dem Taschenrechner.

Mithilfe des Gaußverfahrens:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} 3x_1-4x_2-x_3=4 \\ 3x_1-3x_2+x_3=3\end{vmatrix} \Leftrightarrow \begin{vmatrix} 3x_1-4x_2-x_3=4 \\ x_2+2x_3=-1\end{vmatrix}}

Setze Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3=t} und bestimme Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2} .

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_2=-1-2t}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1=-\frac{7}{3}t}

Stelle die Geradengleichung auf.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x} = \begin{pmatrix} 0 \\ {-}1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -\frac{7}{3} \\ {-}2 \\ 1 \end{pmatrix} }

Mithilfe des Taschenrechners:

linSolveFehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix}\begin{cases} 3x_1-4x_2-x_3=4 \\ 3x_1-3x_2+x_3=3,\{x_1,x_2,x_3\}\end{cases} \end{pmatrix}}

                      Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \{\frac{-7c3}{3},-2c3-1,c3\}}

Stelle mithilfe der Werte aus der Lösungsmenge die Geradengleichung auf.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x} = \begin{pmatrix} 0 \\ {-}1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -\frac{7}{3} \\ {-}2 \\ 1 \end{pmatrix} }


⭐Aufgabe 16: Untersuchung der Lagebeziehung zwischen zwei Ebenen in Koordinatenform

Gegeben ist eine Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon -2x_1-3x_2+x_3=2} . Untersuche die Lagebeziehung zwischen dieser und den dir angezeigten Ebenen. Ziehe die Ebenen in das entsprechende Feld.



Um die Lagebeziehung von zwei Ebenen in Koordinatenform zu bestimmen, benötigst du keinen Taschenrechner. Schaue dir die beiden Gleichungen gut an.
Vergleiche die Gleichungen der zwei Ebenen miteinander. Vergleiche dabei zunächst die Normalenvektoren der Ebenen – also die linken Seiten der Gleichungen – miteinander und überprüfe, ob sie Vielfache voneinander sind. Falls das zutrifft, vergleiche auch noch die beiden rechte Seiten der Gleichungen miteinander.

Die Ebenen schneiden sich, wenn die beiden Gleichungen keine Vielfachen voneinander sind.

Die Ebenen sind parallel, wenn die Normalenvektoren identisch oder Vielfache voneinander sind, aber das LGS keine Lösung besitzt.

Die Ebenen sind identisch, wenn die Normalenvektoren identisch oder Vielfache voneinander sind und das LGS somit unendlich viele Lösungen hat.


⭐Aufgabe 17: Schnitt von zwei Zeltflächen


Die beiden Seitenflächen eines Zeltes liegen in den Ebenen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x} = \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 3 \\ 4\end{pmatrix}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon \vec{x} = \begin{pmatrix} 8 \\ 6 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ u \cdot \begin{pmatrix} 0 \\ {-}3 \\ 4 \end{pmatrix}} . Der Erdboden wird durch die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1x_2} -Ebene aufgespannt.

Skizze- Schnittgerade zweier Zeltwände.png

In welcher Höhe befindet sich die obere Zeltkante, wenn eine Einheit im Koordinatensystem Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 50} cm entspricht?

Die obere Zeltkante entspricht der Schnittgeraden der beiden Ebenen.
Die Höhe der Zeltkante kannst du mithilfe des Stützvektors der Schnittgeraden ermitteln.

Die Zeltkante entspricht der Schnittgeraden der beiden Ebenen. Um die Höhe zu bestimmen, benötigt man also den Stützvektor der Geradengleichung der Zeltkante.

Da die Ebenen in Parameterform gegeben sind, setzen wir die Gleichungen zunächst gleich und lösen dann das entsprechende LGS:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \begin{vmatrix} 8-r=8-t \\ 3s=6-3u \\ 4s=4u \end{vmatrix} \Leftrightarrow \begin{vmatrix} -r+t=0\\ 3s+3u=6 \\4s-4u=0 \end{vmatrix}\Leftrightarrow \begin{vmatrix} r=t\\ s+u=2 \\ s=u\end{vmatrix}}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow s=u=1} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r=t}

Einsetzen von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s} in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} ergibt:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x} = \begin{pmatrix} 8 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} {-}1 \\ 0 \\ 0 \end{pmatrix}+ 1 \cdot \begin{pmatrix} 0 \\ 3 \\ 4\end{pmatrix}}

Die Schnittgerade der beiden Ebenen lautet demnach:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle g\colon \vec{x} = \left( \begin{matrix} 8\\ 3\\ 4 \end{matrix} \right) + v \cdot \left( \begin{matrix} -1\\ 0\\ 0 \end{matrix} \right)}

Durch den Richtungsvektor der Geraden wird deutlich, dass sich die Schnittgerade parallel zur Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1x_2} -Ebene befindet und somit überall den gleichen Abstand zum Boden hat. Da die Schnittgerade der oberen Zeltkante entspricht, lässt sich aus dem Stützvektor der Geraden die Höhe ablesen. Die Höhe kann mithilfe der Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_3} -Koordinate des Vektors bestimmt werden.

Die obere Zeltkante befindet sich also in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 2} m Höhe.

⭐Berechnung des Winkels zwischen Ebene und Ebene

⭐ Merke: Berechnung des Winkel zwischen zwei Ebenen

Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Dazu kannst du die Normalenvektoren betrachten. Sie schließen denselben Winkel ein, wie die beiden Ebenen. Somit kann das Berechnen des Schnittwinkels zwischen zwei Ebenen auf das Berechnen des Winkels zwischen zwei Vektoren zurückgeführt werden.

Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in das Kapitel Ebenen im Raum.


⭐ Merksatz: Formel zur Berechnung des Winkels zwischen zwei Ebenen


Winkel zwischen zwei Ebenen

Seien Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} zwei sich schneidende Ebenen mit den Normalenvektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{m}} . Der Schnittwinkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} zwischen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} kann mit folgender Formel berechnet werden: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cos(\alpha)=\frac{ |\vec{n} \ast \vec{m}|}{|\vec{n}| \cdot |\vec{m}|}} .

Ist nach dem Schnittwinkel gefragt, so ist immer der kleinere der beiden Winkel gesucht, die von den Ebenen eingeschlossen werden. Mit der obigen Formel erhält man deshalb für Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} immer Werte zwischen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 0^{\circ}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 90^{\circ}} .


⭐Beispiel: Winkel berechnen zwischen zwei Ebenen


Gegeben sind zwei Ebenen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix}+ s \cdot \begin{pmatrix} 1 \\ 1 \\ 0\end{pmatrix}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon 7x_1+x_2-3x_3=1} . Berechne den Schnittpunkt zwischen den Ebenen.

1. Schritt: Bestimmte die Normalenvektoren von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} .

Der Normalenvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}} . Der Normalenvektor von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} lautet Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{m} = \begin{pmatrix} 7 \\ 1 \\ -3 \end{pmatrix}} .

2. Schritt: Einsetzen der Normalenvektoren in die Formel.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cos(\alpha)=\frac{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \ast \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2\\ {-}2\\ {-}1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 7\\ 1\\ {-}3 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{15}{\sqrt{9} \cdot \sqrt{59}} \Leftrightarrow \cos(\alpha) = \frac{15}{3 \cdot \sqrt{59}} }

3. Schritt: Auflösen der Gleichung.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha = \cos^{-1}(\frac{15}{3 \cdot \sqrt {59}}) \Leftrightarrow \alpha \approx 49{,}39^{\circ}} Der Winkel zwischen den Ebenen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} beträgt ca. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 49{,}39^{\circ}} .


⭐ Aufgabe 18: Schnittwinkel zwischen Ebenen


Sei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} eine Ebene mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix}} , Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} eine Ebene mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon 2x_1+6x_2+4x_3=2} . und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H} eine Ebene mit Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H\colon 2x_1+4x_2-7x_3=13 } .

Berechne den Winkel zwischen

a) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F}

Bei der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} handelt es sich um die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1x_2} -Ebene. Der Normalenvektor ist also Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} } . Der Normalenvektor der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} kann abgelesen werden: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{m} = \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix}} .

Einsetzen in die Formel liefert:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cos(\alpha) = \frac{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 2\\ 6\\ 4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 2\\ 6\\ 4 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{|4|}{\sqrt{1} \cdot \sqrt{4+36+16}} \Leftrightarrow \cos(\alpha) = \frac{4}{\sqrt{56}}}

Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha = \cos^{-1}(\frac{4}{\sqrt {56}}) \Leftrightarrow \alpha \approx 57{,}69^{\circ}} Der Winkel zwischen den Ebenen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} beträgt ca. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 57{,}69^{\circ}} .

b) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H}

Die Normalenvektor der Ebenen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H} können abgelesen werden als Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{m} = \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{l} = \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix}}

Einsetzen in die Formel liefert:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cos(\alpha) = \frac{ \left| \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix} \ast \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right|}{\left| \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{0}{\sqrt{4+36+16} \cdot \sqrt{4+16+49}} \Leftrightarrow \cos(\alpha) = \frac{0}{\sqrt{3864}} \Leftrightarrow \cos(\alpha) = 0} .

Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha = \cos^{-1}(0) \Leftrightarrow \alpha = 90^{\circ}} Der Winkel zwischen den Ebenen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H} beträgt ca. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 90^{\circ} } .

c) Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H} .

Bei der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} handelt es sich um die Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x_1x_2} -Ebene. Der Normalenvektor ist also Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} } . Der Normalenvektor der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H} kann abgelesen werden: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{m} = \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix}} .

Einsetzen in die Formel liefert:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cos(\alpha) = \frac{\left| \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \ast \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right| }{\left| \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} \right|} \Leftrightarrow \cos(\alpha) = \frac{|{-}7|}{\sqrt{1} \cdot \sqrt{4+16+49}} \Leftrightarrow \cos(\alpha) = \frac{7}{\sqrt{69}}}

Nun muss die Formel mit Hilfe des Taschenrechners aufgelöst werden:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha = \cos^{-1}(\frac{7}{\sqrt {69}}) \Leftrightarrow \alpha \approx 32{,}57^{\circ}} Der Winkel zwischen den Ebenen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle H} beträgt ca. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 32{,}57^{\circ}} .


⭐ Aufgabe 19: Ebenen gesucht


Der Winkel zwischen den beiden Vektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}} beträgt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 67{,}62^{\circ}} .

Gib die Gleichungen zweier Ebenen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F} an, die sich in einem Winkel von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 67{,}62^{\circ}} schneiden.

Der Winkel zwischen zwei Ebenen entspricht dem Winkel zwischen ihren Normalenvektoren. Da der Winkel zwischen den beiden angebenen Vektoren Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{a} = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{b} = \begin{pmatrix} 4\\ 7\\ 2 \end{pmatrix}} genau dem Winkel entspricht, den die Ebenen einschließen sollen, können sie als Normalenvektoren der Ebenen verwendet werden. Die Punkte, durch die die Ebenen laufen, können frei gewählt werden.

Eine mögliche Lösung für die Ebenen lautet daher:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle E\colon x_1 + 3x_3 = 4 } und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle F\colon 4x_1 + 7x_2 + 2x_3 = 8} .


⭐ Aufgabe 20: Bank am Wanderweg


An einem Wanderweg soll eine Holzbank aufgestellt werden. Die Bank wird so ausgerichtet, dass die Sitzfläche durch die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S\colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0{,}5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}+ s \cdot \begin{pmatrix} 2 \\ 0{,}4 \\ 0\end{pmatrix}, r,s \in [0, 1]} und die Rückenlehne durch die Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R_1\colon -x_2 + 0{,}4 x_3 = -0{,}2} beschrieben werden kann.

a) Um eine bequeme Sitzposition zu ermöglichen, sollte der Winkel zwischen Rückenlehne und Sitzfläche zwischen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 100^{\circ}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 110^{\circ}} liegen. Überprüfe, ob dies auf die neue Bank zutrifft.

Mache dir eine Skizze. Überlege genau, welchen Winkel du berechnen musst.
Skizze: Winkel zwischen der Rückenlehne und der Sitzfläche der Bank

Als Normalenvektor der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S} erhält man Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{n}=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}} und als Normalenvektor der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R_1} erhält man Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0{,}4 \end{pmatrix}} .

Einsetzen in die Formel liefert:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cos(\gamma)=\frac{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\gamma) = \frac{\frac{2}{5}}{1 \cdot \sqrt{\frac{29}{25}}}}

Umstellen der Formel ergibt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma=\cos^{-1} \left( \frac{\frac{2}{5}}{\sqrt{\frac{29}{25}}} \right) \Leftrightarrow \gamma \approx 68{,}2^{\circ}}

Wie in der Abbildung zu sehen wurde der Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \gamma} berechnet. Der Winkel zwischen der Sitzfläche und der Rückenlehne wird aber durch den Winkel Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} beschrieben. Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \alpha} erhält man, indem man Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 180^\circ - \gamma } berechnet: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 180^{\circ} - 68{,}2^{\circ} = 111{,}8^{\circ}} . Mit einem Wert von Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 111{,}8^{\circ}} liegt der Winkel zwischen Rückenlehne und Sitzfläche etwas über dem optimalen Winkel.

b)

Skizze: Bänke am Wanderweg

Da der Wanderweg sehr beliebt ist, soll noch eine zweite Bank aufgestellt werden. Sie wird so ausgerichtet, dass beide Bänke mit den Rückenlehnen aneinander stehen. Auch bei der zweiten Bank können die Sitzfläche und die Rückenlehne durch Ebenen beschrieben werden. Die Sitzfläche kann durch die selbe Ebene beschrieben werden, wie die Sitzfläche der anderen Bank (Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle S} ). Die Rückenlehne entspricht der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R_2\colon -x_2 - 0{,}4 x_3 = -1 } Berechne den Winkel, unter dem die beiden Rückenlehnen der Bänke aufeinander treffen.

Skizze: Winkel zwischen den beiden Bänken am Wanderweg
Gesucht ist der Winkel zwischen der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R_1} und der Ebene Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R_2} . Nutze zur Berechnung die Normalenvektoren der Ebenen.

Es soll der Winkel zwischen den beiden Rückenlehnen Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R_1} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R_2} berechnet werden.

Die Normalenvektoren der Ebenen lauten Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{m}=\begin{pmatrix} 0 \\ -1 \\ 0{,}4 \end{pmatrix}} und Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \vec{l}=\begin{pmatrix} 0 \\ -1 \\ -0{,}4 \end{pmatrix}} .

Einsetzen in die Formel liefert:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \cos(\beta)=\frac{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \ast \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|}{\left| \begin{pmatrix} 0\\ {-}1\\ 0{,}4 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\ {-}1\\ {-}0{,}4 \end{pmatrix} \right|} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\sqrt{\frac{29}{25}} \cdot \sqrt{\frac{29}{25}}} \Leftrightarrow \cos(\beta)=\frac{\frac{21}{25}}{\frac{29}{25}} \Leftrightarrow \cos(\beta)=\frac{21}{29}}

Umstellen der Formel ergibt: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \beta=\cos^{-1} \left( \frac{21}{29} \right) \Leftrightarrow \beta \approx 43{,}6^{\circ} } . Der Winkel zwischen den beiden Rückenlehnen beträgt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle 43{,}6^{\circ} } .