Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Geraden im Raum: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
(GeoGebra-Größe angepasst)
Markierung: 2017-Quelltext-Bearbeitung
 
(45 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 25: Zeile 25:
}}
}}


Wie du nun eine Parametergleichung durch zwei gegebene Punkte aufstellst, wird im folgenden Video erklärt:  
Wie du nun eine Parametergleichung durch zwei gegebene Punkte aufstellst, wird im folgenden Video erklärt:
{{#ev:youtube|cCetvDxbTQk}}


{{#ev:youtube|cCetvDxbTQk|900}}
{{Box
|Aufgabe 1: Parameter einer Geradengleichung
|Im Folgenden kannst du sehen, wie die Gerade vom Stützpunkt <math>A</math>, Richtungsvektor <math>\vec{v}</math> und Parameter <math>t</math> abhängt. Wähle verschiedene Stützpunkte und Richtungsvektoren und verändere den Parameter. Wo liegt der Punkt <math>P</math>, wenn du <math>t < 0</math>, <math>t = 0</math> und <math>t > 0</math> wählst? Was bedeutet dies anschaulich? Dazu kannst du dir auch die Gerade <math>g</math> anzeigen lassen.




Im Folgenden kannst du sehen, wie die Gerade vom Stützvektor, Richtungsvektor und Parameter abhängt:
<ggb_applet id="avyg7hmy" width="1000" height="509" />


<ggb_applet id="EfrTd7YR" width="900" height="500&quot;&quot;" border="888888" />
{{Lösung versteckt
 
|* Für <math>t < 0</math> liegt der Punkt <math>P</math> hinter dem Punkt <math>A</math>, d.h. man geht auf der Gerade vom Stützpunkt aus gesehen rückwärts.
 
* Für <math>t = 0</math> liegt der Punkt <math>P</math> genau auf dem Punkt <math>A</math>, d.h. sie sind identisch, man befindet sich also genau auf dem Stützpunkt.
<span style="color: Red"> ????''Anmerkung zu den Lösungen: Wie du wahrscheinlich im obigen Video mitbekommen hast, gibt es unendlich viele Lösungen. Daher sind auch Vielfache der Richtungsvektoren oder andere Stützvektoren, wenn sie auf der Geraden <math>g</math> liegen, möglich.''????</span>
* Für <math>t > 0</math> liegt der Punkt <math>P</math> vor dem Punkt <math>A</math>, d.h. man geht auf der Gerade vom Stützpunkt aus gesehen vorwärts.
|Lösung anzeigen
|Lösung  verbergen
}}


|Arbeitsmethode
|Farbe={{Farbe|orange}}
}}


{{Box
{{Box
|Aufgabe 1: Geradengleichung aufstellen (zwei gegebene Punkte)
|Aufgabe 2: Geradengleichung aufstellen (zwei gegebene Punkte)
|Bearbeite entweder die analoge Aufgabe (I) oder die digitale Aufgabe (II):
|Bearbeite nun entweder die analoge Aufgabe (I) oder die digitale Aufgabe (II):


(I) Die Gerade <math>g</math> geht durch die Punkte <math>A</math> und <math>B</math>. Gib zwei Gleichungen für <math>g</math> an.  
(I) Die Gerade <math>g</math> geht durch die Punkte <math>A</math> und <math>B</math>. Gib zwei Gleichungen für <math>g</math> an.  
Zeile 49: Zeile 58:


{{Lösung versteckt
{{Lösung versteckt
|Zwei mögliche Geraden sind <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 22 \end{pmatrix} + s \cdot \begin{pmatrix} 4 \\ -6 \\ 5 \end{pmatrix}, s \in \mathbb{R} </math> und <math>g \colon \vec{x} = \begin{pmatrix} 5 \\ -4 \\ 7 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 6 \\ -5 \end{pmatrix}, t \in \mathbb{R} </math>.  
|Wie du im obigen Video gesehen hast, gibt es unendlich viele Lösungen, denn es sind immer Vielfache des Richtungsvektors möglich. Daher ist es möglich, dass deine Lösung hier zwar nicht aufgefürt, aber dennoch korrekt ist. Dazu überprüfe, ob dein Richtungsvektor ein Vielfaches einer der angegeben Richtungsvektoren ist. Beachte das auch bei allen folgenden Aufgaben!
 
Zwei mögliche Geraden sind <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 4 \\ -6 \\ 5 \end{pmatrix}, s \in \mathbb{R} </math> und <math>g \colon \vec{x} = \begin{pmatrix} 5 \\ -4 \\ 7 \end{pmatrix} + t \cdot \begin{pmatrix} -4 \\ 6 \\ -5 \end{pmatrix}, t \in \mathbb{R} </math>.  
|Lösung Aufgabe a) anzeigen
|Lösung Aufgabe a) anzeigen
|Lösung Aufgabe a) verbergen
|Lösung Aufgabe a) verbergen
Zeile 55: Zeile 66:


{{Lösung versteckt
{{Lösung versteckt
|Zwei mögliche Geraden sind <math>g \colon \vec{x} = \begin{pmatrix} -3 \\ -3 \\ 9 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix}, s \in \mathbb{R} </math> und <math>g \colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -3 \\ -2 \\ 6 \end{pmatrix}, t \in \mathbb{R} </math>.
|Zwei mögliche Geraden sind <math>g \colon \vec{x} = \begin{pmatrix} -3 \\ -2 \\ 9 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix}, s \in \mathbb{R} </math> und <math>g \colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} -3 \\ -2 \\ 6 \end{pmatrix}, t \in \mathbb{R} </math>.
|Lösung Aufgabe b) anzeigen
|Lösung Aufgabe b) anzeigen
|Lösung Aufgabe b) verbergen
|Lösung Aufgabe b) verbergen
Zeile 61: Zeile 72:


(II) Ordne jeweils die zwei Punkte A und B der Parametergleichung der Geraden durch A und B zu.  
(II) Ordne jeweils die zwei Punkte A und B der Parametergleichung der Geraden durch A und B zu.  
{{LearningApp|width=100%|height=500px|app=pc62b4ck318}}
{{LearningApp|width=100%|height=500px|app=20364580}}
|Arbeitsmethode  
|Arbeitsmethode  
|Farbe={{Farbe|orange}}  
|Farbe={{Farbe|orange}}  
Zeile 69: Zeile 80:


{{Box
{{Box
|Aufgabe 2: Geradengleichung aufstellen (gegebener Punkt und gegeben Parallelität)
|Aufgabe 3: Geradengleichung aufstellen aus Punkt und Richtungsvektor
|Stelle jeweils eine Geradengleichung auf.
|Stelle jeweils eine Geradengleichung auf.


'''a)''' Die Gerade <math>g</math> geht durch den Punkt <math>P(2|{-}2|4)</math> und verläuft parallel zur geraden <math>h: \vec{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}, r \in \mathbb{R} </math>.
'''a)''' Die Gerade <math>g</math> geht durch den Punkt <math>P(1|{-}1|2)</math> und hat den Richtungsvektor <math>\vec{v} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}</math>.


{{Lösung versteckt
{{Lösung versteckt
|Wann verlaufen zwei Vektoren parallel zueinander? Übertrage diese Kenntniss auf Geraden.  
|Überlege dir wie der Stützvektor der Geraden lauten muss und stelle dann die passende Geradengleichung mit dem Richtungsvektor auf.
|Tipp Aufgabe a) anzeigen
|Tipp Aufgabe a) anzeigen
|Tipp Aufgabe a) verbergen
|Tipp Aufgabe a) verbergen
}}
}}


'''b)''' Die Gerade <math>g</math> geht durch den Punkt <math>P(1|{-}1|{-}2)</math> und verläuft parallel zur <math>x_1</math>-Achse.
'''b)''' Stelle eine Geradengleichung für die <math>x_1</math>-Achse auf.


{{Lösung versteckt
{{Lösung versteckt
|Wie könnte eine Geradengleichung der <math>x_1</math>-Achse lauten? Danahc hilft dir das Vorgehen aus a) weiter.
|Überlege dir einen geschickten Aufpunkt; wie muss dann der Richtungsvektor aussehen?
|Tipp Aufgabe b) anzeigen
|Tipp Aufgabe b) anzeigen
|Tipp Aufgabe b) verbergen
|Tipp Aufgabe b) verbergen
}}
}}


'''c)''' Die Gerade <math>g</math> geht durch den einen beliebigen Punkt <math>P(p_1|p_2|p_3)</math> und verläuft parallel zur <math>x_3</math>-Achse.
'''c)''' Die Gerade <math>g</math> geht durch den Punkt <math>P(2|{-}2|4)</math> und verläuft parallel zur Geraden <math>h: \vec{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}, r \in \mathbb{R} </math>.
 
{{Lösung versteckt
|Wann verlaufen zwei Vektoren parallel zueinander? Übertrage diese Kenntniss auf Geraden.
|Tipp Aufgabe c) anzeigen
|Tipp Aufgabe c) verbergen
}}
 
'''d)''' Die Gerade <math>g</math> geht durch den Punkt <math>P(1|{-}1|{-}2)</math> und verläuft parallel zur <math>x_1</math>-Achse.
 
'''e)''' Die Gerade <math>g</math> geht durch den einen beliebigen Punkt <math>P(p_1|p_2|p_3)</math> und verläuft parallel zur <math>x_3</math>-Achse.


{{Lösung versteckt
{{Lösung versteckt
|Diese Aufgabe funktioniert ähnlich zu b).
|Diese Aufgabe funktioniert ähnlich zu d).
|Tipp Aufgabe b) anzeigen
|Tipp Aufgabe e) anzeigen
|Tipp Aufgabe b) verbergen
|Tipp Aufgabe e) verbergen
}}
}}


Zeile 99: Zeile 120:


{{Lösung versteckt
{{Lösung versteckt
|Eine mögliche Gerade ist <math>g \colon \vec{x} = \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}, s \in \mathbb{R} </math>.  
|Eine mögliche Gerade ist <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, s \in \mathbb{R} </math>.  
|Lösung Aufgabe a) anzeigen
|Lösung Aufgabe a) anzeigen
|Lösung Aufgabe a) verbergen
|Lösung Aufgabe a) verbergen
Zeile 105: Zeile 126:


{{Lösung versteckt
{{Lösung versteckt
|Eine mögliche Gerade ist <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, s \in \mathbb{R} </math>.
|Eine mögliche Gerade ist <math>x_1 \colon \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, s \in \mathbb{R} </math> oder noch einfacher <math>x_1 \colon \vec{x} = s \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, s \in \mathbb{R} </math>
|Lösung Aufgabe b) anzeigen
|Lösung Aufgabe b) anzeigen
|Lösung Aufgabe b) verbergen
|Lösung Aufgabe b) verbergen
Zeile 111: Zeile 132:


{{Lösung versteckt
{{Lösung versteckt
|Eine mögliche Gerade ist <math>g \colon \vec{x} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, s \in \mathbb{R} </math>.  
|Eine mögliche Gerade ist <math>g \colon \vec{x} = \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}, s \in \mathbb{R} </math>.  
|Lösung Aufgabe c) anzeigen
|Lösung Aufgabe c) anzeigen
|Lösung Aufgabe c) verbergen
|Lösung Aufgabe c) verbergen
}}
{{Lösung versteckt
|Eine mögliche Gerade ist <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, s \in \mathbb{R} </math>.
|Lösung Aufgabe d) anzeigen
|Lösung Aufgabe d) verbergen
}}
{{Lösung versteckt
|Eine mögliche Gerade ist <math>g \colon \vec{x} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, s \in \mathbb{R} </math>.
|Lösung Aufgabe e) anzeigen
|Lösung Aufgabe e) verbergen
}}
}}


Zeile 121: Zeile 154:
===Punktprobe===
===Punktprobe===


Wie du überprüfst, ob ein gegebener Punkt auf einer gegebenen Gerade der daneben liegt, erfährst du im folgenden Video:
Wie du überprüfst, ob ein gegebener Punkt auf einer gegebenen Gerade oder daneben liegt, kannst du [https://www.youtube.com/watch?v=1kJ9Nq8zXlI hier] noch einmal nachschauen.
 
{{#ev:youtube|1kJ9Nq8zXlI|900}}


{{Box
{{Box
Zeile 132: Zeile 163:


{{Box
{{Box
|Aufgabe 3: Punktprobe mit einer Geraden I
|Aufgabe 4: Punktprobe mit einer Geraden I
|Überprüfe, ob der Punkt <math>P</math> auf der Geraden <math>g</math> liegt.  
|Überprüfe, ob der Punkt <math>P</math> auf der Geraden <math>g</math> liegt.  


Zeile 140: Zeile 171:


{{Lösung versteckt
{{Lösung versteckt
|Die Punktprobe ist erfüllt für <math>t = -1</math>, d.h. der Punkt <math>P</math> liegt auf der Geraden <math>g</math>.
|Die Punktprobe ist erfüllt, denn:
 
<math>\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 4 \end{pmatrix} + r \cdot \begin{pmatrix} 5 \\ -3 \\ 5 \end{pmatrix}
 
\Leftrightarrow\left\vert\begin{alignat}{7}
2 &&\; = \;&& 7 &&\; + \;&& 5r \\
3 &&\; = \;&& 0 &&\; - \;&& 3r \\
-1 &&\; = \;&& 4 &&\; + \;&& 5r
\end{alignat}\right\vert
 
\Leftrightarrow\left\vert\begin{alignat}{7}
r &&\; = \;&& -1 \\
r &&\; = \;&& -1 \\
r &&\; = \;&& -1
\end{alignat}\right\vert</math>
 
Somit liegt der Punkt <math>P</math> auf der Geraden <math>g</math>.
|Lösung Aufgabe a) anzeigen
|Lösung Aufgabe a) anzeigen
|Lösung Aufgabe a) verbergen
|Lösung Aufgabe a) verbergen
Zeile 146: Zeile 193:


{{Lösung versteckt
{{Lösung versteckt
|Die Punktprobe ist nicht erfüllt, d.h. der Punkt <math>P</math> liegt nicht auf der Geraden <math>g</math>.
|Die Punktprobe ist nicht erfüllt, denn:
 
<math>\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}
 
\Leftrightarrow\left\vert\begin{alignat}{7}
2 &&\; = \;&& 1 &&\; + \;&& r \\
-1 &&\; = \;&& 0 &&\; + \;&& 3r \\
-1 &&\; = \;&& 1 &&\; + \;&& 3r
\end{alignat}\right\vert
 
\Leftrightarrow\left\vert\begin{alignat}{7}
r &&\; = \;&& 1 \\
r &&\; = \;&& -\frac{1}{3} \\
r &&\; = \;&& -\frac{2}{3}
\end{alignat}\right\vert</math>
 
Es ergibt sich ein Widerspruch. Somit liegt der Punkt <math>P</math> nicht auf der Geraden <math>g</math>.
|Lösung Aufgabe b) anzeigen
|Lösung Aufgabe b) anzeigen
|Lösung Aufgabe b) verbergen
|Lösung Aufgabe b) verbergen
Zeile 156: Zeile 219:


{{Box
{{Box
|Aufgabe 4: Punktprobe mit einer Geraden II
|Aufgabe 5: Punktprobe mit einer Geraden II
|Für welchen Wert <math>s </math> mit <math> s \in \mathbb{R} </math> liegt der Punkt <math>P</math> auf der Geraden <math>g: \vec{x} = \begin{pmatrix} 9 \\ -s \\ 2s \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, r \in \mathbb{R} </math>?  
|Für welche Werte <math> s, r \in \mathbb{R} </math> liegt der Punkt <math>P</math> auf der Geraden <math>g: \vec{x} = \begin{pmatrix} 9 \\ -s \\ 2s \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} </math>?  


'''a)''' <math>P(13|3|0)</math>
'''a)''' <math>P(13|3|0)</math>


'''b)''' <math>P(12|{-}1|6{,}5)</math>  
'''b)''' <math>P(5|{-}2|0)</math>
 
{{Lösung versteckt
|Berechne zunächst mithilfe der ersten Gleichung einen Wert für <math>r</math>. Was könnte man nun machen?
|Tipp 1 Aufgabe a) und b) anzeigen
|Tipp 1 Aufgabe a) und b) verbergen
}}
 
{{Lösung versteckt
|Setze nun den ausgerechneten Wert für <math>r</math> in die beiden anderen Gleichungen ein und berechne <math>s</math>.
|Tipp 2 Aufgabe a) und b) anzeigen
|Tipp 2 Aufgabe a) und b) verbergen
}}


{{Lösung versteckt
{{Lösung versteckt
|Die Punktprobe ist für <math>s = -1</math> mit <math>r = 2</math> erfüllt.
|Die Punktprobe ist erfüllt, denn:
 
<math>\begin{pmatrix} 13 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 9 \\ -s \\ 2s \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}
 
\Leftrightarrow\left\vert\begin{alignat}{7}
13 &&\; = \;&& 9 &&\; + \;&& 2r \\
3 &&\; = \;&& -s &&\; + \;&& r \\
0 &&\; = \;&& 2s &&\; + \;&& r
\end{alignat}\right\vert
 
\Leftrightarrow\left\vert\begin{alignat}{7}
r &&\; = \;&& 2 \\
3 &&\; = \;&& -s &&\; + \;&& 2 \\
0 &&\; = \;&& 2s &&\; + \;&& 2
\end{alignat}\right\vert
 
\Leftrightarrow\left\vert\begin{alignat}{7}
r &&\; = \;&& 2 \\
s &&\; = \;&& -1 \\
s &&\; = \;&& -1
\end{alignat}\right\vert</math>
 
Somit liegt der Punkt <math>P</math> für <math>r = 2</math> und <math>s = -1</math> auf der Geraden <math>g</math>.
|Lösung Aufgabe a) anzeigen
|Lösung Aufgabe a) anzeigen
|Lösung Aufgabe a) verbergen
|Lösung Aufgabe a) verbergen
Zeile 170: Zeile 267:


{{Lösung versteckt
{{Lösung versteckt
|Die Punktprobe ist für <math>s = 2{,}5</math> mit <math>r = 1{,}5</math> erfüllt.
|Es gibt keine Lösung, denn:
 
<math>\begin{pmatrix} 5 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 9 \\ -s \\ 2s \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}
 
\Leftrightarrow\left\vert\begin{alignat}{7}
5 &&\; = \;&& 9 &&\; + \;&& 2r \\
-2 &&\; = \;&& -s &&\; + \;&& r \\
0 &&\; = \;&& 2s &&\; + \;&& r
\end{alignat}\right\vert
 
\Leftrightarrow\left\vert\begin{alignat}{7}
r &&\; = \;&& -2 \\
-2 &&\; = \;&& -s &&\; + \;&& -2 \\
0 &&\; = \;&& 2s &&\; + \;&& -2
\end{alignat}\right\vert
 
\Leftrightarrow\left\vert\begin{alignat}{7}
r &&\; = \;&& 2 \\
s &&\; = \;&& 0 \\
s &&\; = \;&& 1
\end{alignat}\right\vert</math>
 
Es ergibt sich ein Widerspruch, weshalb keine Werte für Punkt <math>s, r</math> gibt, sodass der Punkt <math>P</math> auf der Geraden <math>g</math> liegt.
|Lösung Aufgabe b) anzeigen
|Lösung Aufgabe b) anzeigen
|Lösung Aufgabe b) verbergen
|Lösung Aufgabe b) verbergen
Zeile 177: Zeile 296:
|Arbeitsmethode  
|Arbeitsmethode  
}}  
}}  
Hier noch eine Aufgabe zu Geraden mit besonderen Lagen im Koordinatensystem:
{{Box
|Aufgabe 6: Besondere Geraden im Raum
|Kreuze alle(!) richtigen Antworten an!
{{LearningApp|width=100%|height=500px|app=p221zv0i321}}
|Arbeitsmethode
|Farbe={{Farbe|grün|dunkel}}
}}


===Spurpunkte einer Geraden===
===Spurpunkte einer Geraden===


Wie du die Spurpunkte, also die Schnittpunkte der Geraden mit den Koordinatenebenen bestimmst, zeigt das folgende Video.
Wie du die Spurpunkte, also die Schnittpunkte der Geraden mit den Koordinatenebenen bestimmst, kannst du hier noch einmal nachvollziehen:
{{#ev:youtube|OCO28fT5Aww}}


Falls du nicht mehr weißt, was die Koordinatenebenen sind, kannst unter folgendem Tipp noch einmal dein Wissen auffrischen:  
Falls du nicht mehr weißt, was die Koordinatenebenen sind, kannst unter folgendem Tipp noch einmal dein Wissen auffrischen:  
Zeile 191: Zeile 323:
}}
}}


{{#ev:youtube|OCO28fT5Aww|900}}


{{Box
{{Box
|Achtung: Nicht jede Gerade besitzt drei Spurpunkte!
|Aufgabe 7: Spurpunkte einer Geraden (Besondere Lage)
|Verläuft eine Gerade zu einer der Koordinatenachsen oder -ebenen (echt) parallel, gibt es keinen Schnittpunkt mit der entsprechenden Koordinatenebene.
|Hier kannst du dir die Spurpunkte von verschiedenen Geraden anzeigen lassen. Dazu kannst du den Aufpunktvektor <math>\vec{a}</math> und den Richtungsvektor <math>\vec{u}</math> mit den Schiebereglern entsprechend anpassen. Anschließend kannst du dir die drei Spurpunkte und ggf. auch die Ebenen anzeigen lassen, indem du das entsprechende Feld ankreuzt. Dann kannst du dir die Koordinatebenen mit den verschiedenen Schnittpunkten anzeigen lassen:
In deiner Rechnung erkennst du es daran, dass es in der Zeile, die du <math>= 0</math> gesetzt hast, keine Lösung für den Parameter gibt.
 
|Merksatz
<ggb_applet id="ynkzgreu" width="1000" height="571" />
}}
 
Untersuche die Geraden, die aus folgenden Aufpunkt- und Richtungsvektoren hervorgehen, auf Spurpunkte und schreibe die Spurpunkte auf. Was sagt die Lage der Geraden über die Anzahl der Spurpunkte aus?
 
'''a)''' <math>\vec{a} = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, \vec{u} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}</math>


{{Box
'''b)''' <math>\vec{a} = \begin{pmatrix} 1,5 \\ 3 \\ -2 \end{pmatrix}, \vec{u} = \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}</math>
|Beispiel: Gerade mit nur zwei Spurpunkten
|Gegeben ist die Gerade <math>g</math> definiert durch <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, r \in \mathbb{R} </math>. Im Folgenden werden die Spurpunkte berechnet (du kannnst es natürlich auch selbst versuchen und dann deine Lösung kontrollieren):


{{Lösung versteckt
'''c)''' <math>\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \vec{u} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}</math>
|Für den Schnittpunkt <math>S_{12}</math> der Geraden <math>g</math> mit der <math>x_1x_2</math>-Ebene setze die <math>x_3</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 2 + r \cdot 1 \Leftrightarrow r = -1</math>. Setze nun <math>r = -2</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{12}</math> zu erhalten: <math>\vec{S_{12}} = \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix} + (-2) \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -8 \\ 0 \end{pmatrix}</math>
|Schnittpunkt mit der x1x2-Ebene anzeigen
|Schnittpunkt mit der x1x2-Ebene verbergen
}}


{{Lösung versteckt
'''d)''' <math>\vec{a} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix}, \vec{u} = \begin{pmatrix} 3 \\ 0 \\ 1,5 \end{pmatrix}</math>
|Für den Schnittpunkt <math>S_{13}</math> der Geraden <math>g</math> mit der <math>x_1x_3</math>-Ebene setze die <math>x_2</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = -4 + r \cdot 2 \Leftrightarrow r = 2</math>. Setze nun <math>r = 2</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{13}</math> zu erhalten: <math>\vec{S_{13}} = \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}</math>
|Schnittpunkt mit der x1x3-Ebene anzeigen
|Schnittpunkt mit der x1x3-Ebene verbergen
}}


{{Lösung versteckt
{{Lösung versteckt
|Für den Schnittpunkt <math>S_{23}</math> der Geraden <math>g</math> mit der <math>x_2x_3</math>-Ebene setze die <math>x_1</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 1 + r \cdot 0 \Leftrightarrow 0 \neq 1</math>. Es ergibt sich ein Widerspruch, weshalb es keinen Schnittpunkt <math>S_{23}</math> der Geraden <math>g</math> mit der <math>x_2x_3</math>-Ebene gibt. Somit verläuft <math>g</math> parallel zur <math>x_2x_3</math>-Ebene.
|Betrachte mal ggf. vorhandene Parallelitäten der Geraden zu den Koordinatenebenen. Fällt dir nun etwas auf?
|Schnittpunkt mit der x2x3-Ebene anzeigen
|Tipp für alle Aufgaben anzeigen
|Schnittpunkt mit der x2x3-Ebene verbergen
|Tipp für alle Aufgaben verbergen
}}
}}


|Hervorhebung1
}}


Hier kannst du dir die Spurpunkte von verschiedenen Geraden anzeigen lassen. Dazu kannst du die Punkte <math>A</math> und <math>B</math> anpassen, durch die die Gerade verlaufen soll. Dann kannst du dir die Koordinatebenen mit den verschiedenen Schnittpunkten anzeigen lassen:


<ggb_applet id="KrHVKfjB" width="900" height="402" border="888888" />
{{Lösung versteckt
 
|Die drei Spurpunkte lauten <math>S_{12}(4,5|0,5|0)</math>, <math>S_{13}(6|0|1)</math> und <math>S_{23}(0|2|{-}3)</math>. Da die Gerade nicht parallel zu den Koordinatenebenen verläuft, besitzt sie drei Spurpunkte.
{{Box
|Lösung Aufgabe a) anzeigen
|Aufgabe 5: Spurpunkte einer Geraden I
|Lösung Aufgabe a) verbergen
|Berechne die Spurpunkte der Geraden <math>g</math> definiert durch <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, r \in \mathbb{R} </math>.
}}


{{Lösung versteckt
{{Lösung versteckt
|Schnittpunkt <math>S_{13}</math> der Geraden <math>g</math> mit der <math>x_1x_3</math>-Ebene: <math>\vec{S_{13}} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}</math>
|Die zwei Spurpunkte lauten <math>S_{12}(4,5|3|0)</math> und <math>S_{23}(0|3|{-}3)</math>. Da die Gerade parallel zur <math>x_1x_3</math>-Ebene verläuft, hat sie keinen Schnittpunkt mit dieser und besitzt folglich nur zwei Spurpunkte.
|Schnittpunkt mit der x1x3-Ebene anzeigen
|Lösung Aufgabe b) anzeigen
|Schnittpunkt mit der x1x3-Ebene verbergen
|Lösung Aufgabe b) verbergen
}}
}}


{{Lösung versteckt
{{Lösung versteckt
|Schnittpunkt <math>S_{12}</math> der Geraden <math>g</math> mit der <math>x_1x_2</math>-Ebene: <math>\vec{S_{12}} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}</math>
|Der einzige Spurpunkt lautet <math>S_{23}(0|2|3)</math>. Da die Gerade sowohl parallel zur <math>x_1x_2</math>-Ebene als auch parallel zur <math>x_1x_3</math>-Ebene verläuft, hat sie keine Schnittpunkte mit diesen und besitzt folglich nur einen Spurpunkt.
|Schnittpunkt mit der x1x2-Ebene anzeigen
|Lösung Aufgabe c) anzeigen
|Schnittpunkt mit der x1x2-Ebene verbergen
|Lösung Aufgabe c) verbergen
}}
}}


{{Lösung versteckt
{{Lösung versteckt
|Der Schnittpunkt <math>S_{23}</math> der Geraden <math>g</math> mit der <math>x_2x_3</math>-Ebene ist nicht vorhanden, da sich ein Widerspruch in der Gleichung ergibt.
|Die zwei Spurpunkte lauten <math>S_{12}(3|0|0)</math> und <math>S_{23}(0|0|{-}1,5)</math>. Da die Gerade innerhalb der <math>x_1x_3</math>-Ebene verläuft, hat sie unendlich viele Schnittpunkte mit dieser.
|Schnittpunkt mit der x2x3-Ebene anzeigen
|Lösung Aufgabe d) anzeigen
|Schnittpunkt mit der x2x3-Ebene verbergen
|Lösung Aufgabe d) verbergen
}}
}}


|Arbeitsmethode  
|Arbeitsmethode  
|Farbe={{Farbe|orange}}  
|Farbe={{Farbe|orange}}  
}}  
}}
 
Hier noch eine Aufgabe zu Geraden mit besonderen Lagen im Koordinatensystem:


{{Box
{{Box
|Aufgabe 6: Geraden im Koordinatensystem
|Aufgabe 8: Spurpunkte einer Geraden  
|Kreuze die richtige(n) Antwort(en) an!
|Berechne die Spurpunkte der Geraden <math>g</math>.


{{LearningApp|width=100%|height=500px|app=p221zv0i321}}
'''a)''' <math>g \colon \vec{x} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, r \in \mathbb{R} </math>


|Arbeitsmethode
'''b)''' <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, r \in \mathbb{R} </math>
|Farbe={{Farbe|grün|dunkel}}  
}}


==Lagebeziehungen von Geraden==
'''c)''' <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix}, r \in \mathbb{R} </math>


====Parallele und identische Geraden====
{{Lösung versteckt
{{Box|1=Definition
|# Für den Schnittpunkt <math>S_{12}</math> der Geraden <math>g</math> mit der <math>x_1x_2</math>-Ebene setze die <math>x_3</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 7 + r \cdot 1 \Leftrightarrow r = -7</math>. Setze nun <math>r = -7</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{12}</math> zu erhalten: <math>\vec{S_{12}} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + (-7) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -7 \\ 0 \end{pmatrix}</math>.
|2=Wir unterscheiden die Lage zweier Geraden in '''identisch''', '''parallel''', '''sich schneidend''' und '''windschief zueinander'''. Um die Lage zweier Geraden zu ermitteln, betrachtet man zunächst die Richtungsvektoren. Sind diese zueinander '''kollinear''' (sind Vielfache voneinander), so können die Geraden lediglich '''identisch''' oder '''parallel''' sein.  
# Für den Schnittpunkt <math>S_{13}</math> der Geraden <math>g</math> mit der <math>x_1x_3</math>-Ebene setze die <math>x_2</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = r</math>. Setze nun <math>r = 0</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{13}</math> zu erhalten: <math>\vec{S_{13}} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix}</math>
# Für den Schnittpunkt <math>S_{23}</math> der Geraden <math>g</math> mit der <math>x_2x_3</math>-Ebene setze die <math>x_1</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 7 + r \cdot 1 \Leftrightarrow r = -7</math>. Setze nun <math>r = -7</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{12}</math> zu erhalten: <math>\vec{S_{12}} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + (-7) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -7 \\ 0 \end{pmatrix}</math>. Hinweis (war nicht in der Aufgabe gefordert): Man erkennt, dass es sich um den selben Schnittpunkt handelt wie der Schnittpunkt der Gerade mit der <math>x_1x_2</math>-Ebene, also: <math>S_{12} = S_{23}</math>.
|Lösung Aufgabe a) anzeigen
|Lösung Aufgabe a) verbergen
}}


Um nun zu untersuchen, ob die Geraden '''parallel''' oder '''identisch''' sind, setzen wir einen Punkt der einen Geraden in die Geradengleichung der anderen Geraden ein. Liegt der Punkt der einen Geraden auf der anderen Geraden, sind die Geraden '''identisch'''. Andernfalls sind die Geraden '''parallel''' zueinander.
{{Lösung versteckt
|# Für den Schnittpunkt <math>S_{12}</math> der Geraden <math>g</math> mit der <math>x_1x_2</math>-Ebene setze die <math>x_3</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 2 + r \cdot 1 \Leftrightarrow r = -2</math>. Setze nun <math>r = -2</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{12}</math> zu erhalten: <math>\vec{S_{12}} = \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix} + (-2) \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -8 \\ 0 \end{pmatrix}</math>.
# Für den Schnittpunkt <math>S_{13}</math> der Geraden <math>g</math> mit der <math>x_1x_3</math>-Ebene setze die <math>x_2</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = -4 + r \cdot 2 \Leftrightarrow r = 2</math>. Setze nun <math>r = 2</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{13}</math> zu erhalten: <math>\vec{S_{13}} = \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}</math>
# Für den Schnittpunkt <math>S_{23}</math> der Geraden <math>g</math> mit der <math>x_2x_3</math>-Ebene setze die <math>x_1</math>-Koordinate <math>= 0</math>: <math>0 = 1 + r \cdot 0 \Leftrightarrow 0 = 1</math>. Es ergibt sich ein Widerspruch, weshalb es keinen Schnittpunkt <math>S_{23}</math> der Geraden <math>g</math> mit der <math>x_2x_3</math>-Ebene gibt. Somit verläuft <math>g</math> parallel zur <math>x_2x_3</math>-Ebene.
|Lösung Aufgabe b) anzeigen
|Lösung Aufgabe b) verbergen
}}


{{Lösung versteckt
|# Für den Schnittpunkt <math>S_{12}</math> der Geraden <math>g</math> mit der <math>x_1x_2</math>-Ebene setze die <math>x_3</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 4 + r \cdot (-4) \Leftrightarrow r = 1</math>. Setze nun <math>r = 1</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{12}</math> zu erhalten: <math>\vec{S_{12}} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + 1 \cdot \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}</math>.
# Für den Schnittpunkt <math>S_{13}</math> der Geraden <math>g</math> mit der <math>x_1x_3</math>-Ebene setze die <math>x_2</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 0 + r \cdot 0 \Leftrightarrow 0 = 0</math>. Man erhält keine Lösung für den Parameter <math>r</math>, aber auch keinen Widerspruch. Somit hat die Gerade unendlich viele Spurpunkte mit er <math>x_1x_2</math>-Ebene, da sie innerhalb dieser Ebene verläuft.
# Für den Schnittpunkt <math>S_{23}</math> der Geraden <math>g</math> mit der <math>x_2x_3</math>-Ebene setze die <math>x_3</math>-Koordinate <math>= 0</math> und forme nach <math>r</math> um: <math>0 = 1 + r \cdot 2 \Leftrightarrow r = -\frac{1}{2}</math>. Setze nun <math>r = -\frac{1}{2}</math> in der Geradengleichung ein, um den Schnittpunkt <math>S_{23}</math> zu erhalten: <math>\vec{S_{23}} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + (-\frac{1}{2}) \cdot \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix}</math>.
|Lösung Aufgabe c) anzeigen
|Lösung Aufgabe c) verbergen
}}


[[Datei:Identische Geraden.png|links|800px|rahmenlos|Identische Geraden]]
|Hervorhebung1
[[Datei:Parallele Geraden.png|links|rahmenlos|800px|Parallele Geraden]]
}}




|3=Merksatz}}
==Lagebeziehungen von Geraden==


====Parallele und identische Geraden====
{{Box|1=Infobox zur Lagebeziehung zweier Geraden Teil 1
|2= Wir unterscheiden die Lage zweier Geraden in '''identisch''', '''parallel''', '''sich schneidend''' und '''windschief zueinander'''.


{{Box|1= Aufgabe 7: Lage erkennen|2= Betrachte die folgenden Geraden <math>g</math> und <math>h</math>. Wie verlaufen die Geraden zueinander? Erkläre, warum hier kaum gerechnet werden muss.
[[Datei:Zwei identische Geraden.png|links|mini|Zwei identische Geraden]]
[[Datei:Zwei parallele Geraden.png|rechts|mini|Zwei parallele Geraden]]


'''a)''' <math>g \colon \vec{x} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R}</math> und <math>h \colon \vec{x} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}, r \in \mathbb{R} </math>
Um die Lage zweier Geraden zu ermitteln, betrachtet man zunächst die Richtungsvektoren. Sind diese zueinander '''kollinear''' (sind Vielfache voneinander), so können die Geraden lediglich '''identisch''' oder '''parallel''' sein.


'''b)''' <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math> und <math>h \colon \vec{x} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math>
Um nun zu untersuchen, ob die Geraden '''parallel''' oder '''identisch''' sind, setzen wir einen Punkt der einen Geraden in die Geradengleichung der anderen Geraden ein. Liegt der Punkt der einen Geraden auf der anderen Geraden, sind die Geraden '''identisch'''. Andernfalls sind die Geraden '''parallel''' zueinander.


'''c)''' <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math> und <math>h \colon \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math>
[[Datei:Zwei Geraden schneiden sich.png|links|mini|Zwei Geraden schneiden sich]]
[[Datei:Zwei windschiefe Geraden.png|rechts|mini|Zwei windschiefe Geraden]]


{{Lösung versteckt|1= Die erste Antwort lautet ''identisch''. Die beiden Geraden sind ''identisch''. Dies sehen wir daran, dass die Richtungsvekoren mit <math> 2\cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} </math> ein Vielfaches voneinander (=kollinear) sind. Da beide Stützvektoren identisch sind, weißt du, dass der Punkt <math>(2|2|5)</math> auf beiden Geraden liegt und somit die beiden Geraden ''identisch'' sind.|2=Lösung Aufgabe a |3=Lösung Aufgabe a}}


{{Lösung versteckt|1= Die zweite Antwort lautet ''parallel''. Die beiden Geraden sind ''parallel''. Während die beiden Richtungsvektoren kollinear, sogar identisch, sind liegt der Aufpunkt <math>(2|2|2)</math> von der Gerade <math>h</math> nicht auf der Geraden von <math> h \colon \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>, mit


<math>
2=1+r\cdot1


2=1+r\cdot2
Sind die Richtungsvektoren nicht kollinear, so können die Geraden sich lediglich '''schneiden''' oder '''windschief''' zueinander verlaufen. Unter sich schneidene Geraden verstehen wir Geraden, die sich in einem Punkt schneiden. Windschiefe Geraden hingegen sind Geraden, die sich wie die parallelen Geraden zwar nicht schneiden, ihre Richtungsvektoren sind jedoch nicht kollinear.


2=1+r\cdot3
</math>
Formen wir dies um zu r erhalten wir


<math>
1=r\cdot1


1=r\cdot2
Um nun zu untersuchen, ob sich die Geraden '''schneiden''' oder zueinader '''winschief zueinander''' sind, müssen wir schauen, ob sich ein Schnittpunkt berechnen lässt. Hierzu setzen wir die Geradengleichungen gleich und formen um. Erhalten wir einen Schnittpunkt, so '''schneiden''' sich die Geraden im Punkt. Andernfalls sind diese Geraden '''windschief''' zueinander.


1=r\cdot3


</math>
|3=Merksatz}}
Formen wir weiter zu <math>r</math> um, erhalten wir
<math>r=\begin{pmatrix} 1 \\ 0.5 \\ 0.333 \end{pmatrix}</math> und damit liegt der Punkt nicht auf der Geraden.|2=Lösung Aufgabe b|3=Lösung Aufgabe b}}


{{Lösung versteckt|1= Die dritte Antwort lautet ''identisch''. Die beiden Geraden sind identisch. Dies sehen wir daran, dass die Richtungsvekoren identisch sind (<math>\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>) und der Aufpunkt <math>(2|3|4)</math> der Geraden h auf der Geraden g liegt:  <math>\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>. |2=Lösung Aufgabe c|3=Lösung Aufgabe c}}
{{Box|1= Aufgabe 9: Lage erkennen|2=Löse das Quiz und mache dir deinen eigenen Lernzettel.
|Farbe={{Farbe|orange}}|3= Arbeitsmethode }}
{{LearningApp|app=19038875|width=100%|height=554px}}


|Farbe={{Farbe|orange}}|3= Arbeitsmethode}}


====windschiefe und sich schneidene Geraden====


{{Box|1=Definition
{{Box|1= Aufgabe 10: Lage zweier Geraden|2=Löse den Lückentext und mache dir deinen eigenen Lernzettel.
|2=Sind die Richtungsvektoren nicht kollinear, so können die Geraden sich lediglich '''schneiden''' oder '''windschief''' zueinander verlaufen. Unter sich schneidene Geraden verstehen wir Geraden, die sich in einem Punkt schneiden. Windschiefe Geraden hingegen sind Geraden, die sich wie die parallelen Geraden zwar nicht schneiden, ihre Richtungsvektoren sind jedoch nicht kollinear.
{{LearningApp|app=19689096|width=100%|height=554px}}|Farbe={{Farbe|orange}}|3= Arbeitsmethode}}


Um nun zu untersuchen, ob sich die Geraden '''schneiden''' oder zueinader '''winschief zueinander''' sind, müssen wir schauen, ob sich ein Schnittpunkt berechnen lässt. Hierzu setzen wir die Geradengleichungen gleich und formen um. Erhalten wir einen Schnittpunkt, so '''schneiden''' sich die Geraden im Punkt. Andernfalls sind diese Geraden '''windschief''' zueinander.


{{Box|1= Aufgabe 11: Lage erkennen|2= Betrachte die folgenden Geraden <math>g</math> und <math>h</math>. Wie verlaufen die Geraden zueinander. Entscheide ohne Nutzung des GTR.


'''a)''' <math>g \colon \vec{x} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R}</math> und <math>h \colon \vec{x} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}, t \in \mathbb{R} </math>


[[Datei:Geschnittene Geraden.png|links|800px|rahmenlos|Geschnittene Geraden]]
'''b)''' <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math> und <math>h \colon \vec{x} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, t \in \mathbb{R} </math>
[[Datei:Windschiefe Geraden.png|links|4000px|rahmenlos|Windschiefe Geraden]]


|3=Merksatz}}
'''c)''' <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}, r \in \mathbb{R} </math> und <math>h \colon \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}, t \in \mathbb{R} </math>


{{Box|1= Aufgabe 8: Lage erkennen|2=Wie verlaufen die folgenden Geraden zueinander? Nenne, falls vorhanden, den Schnittpunkt. Damit es nicht zu viel zu berechnen gibt, kannst du sicher annehmen, dass kein Richtungsvektor der einen Gleichung kollinear zu einem anderen Richtungsvektor ist.
{{Lösung versteckt|1= Hier brauchst du kaum rechnen. Schaue dir die Aufpunkte nochmal genau an. |2= Tipp zu c|3= Tipp zu c}}


'''a)'''<math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math> und <math>h \colon \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math>
'''d)''' <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math> und <math>h \colon \vec{x} = \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}, t \in \mathbb{R} </math>


'''b)'''<math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}, r \in \mathbb{R} </math> und <math>h \colon \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math>
'''e)''' <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math> und <math>h \colon \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, t \in \mathbb{R} </math>


'''c)'''<math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math> und <math>h \colon \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math>
{{Lösung versteckt|1= Die erste Antwort lautet ''identisch''. Die beiden Geraden sind ''identisch''. Dies sehen wir daran, dass die Richtungsvekoren mit <math> 2\cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} </math> ein Vielfaches voneinander (=kollinear) sind. Da beide Stützvektoren identisch sind, weißt du, dass der Punkt <math>(2|2|5)</math> auf beiden Geraden liegt und somit die beiden Geraden ''identisch'' sind.|2=Lösung Aufgabe a |3=Lösung Aufgabe a}}


{{Lösung versteckt|1= Die erste Antwort lautet ''schneiden''. Die beiden Geraden ''schneiden'' sich im Punkt <math>\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}</math>. Dies erhält man, indem man beide Geradengleichungen in ein Gleichungssystem umformt, gleichsetzt und zu <math>r</math> und <math>t</math> umformt:
{{Lösung versteckt|1= Die zweite Antwort lautet ''parallel''. Die beiden Geraden sind ''parallel''. Während die beiden Richtungsvektoren kollinear, sogar identisch, sind liegt der Aufpunkt <math>(2|2|2)</math> von der Gerade <math>h</math> nicht auf der Geraden von <math> g</math>  


<math>
<math> \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>, mit
1+r\cdot1=2+t\cdot4 </math>


<math>
<math>\left\vert\begin{alignat}{7}
1+r\cdot2=3+t\cdot5 </math>
2 &&\; = \;&& 1 &&\; +\;&& r\cdot1\\


<math>
2 &&\; =\;&& 1 &&\; +\;&& r\cdot2\\
1+r\cdot3=4+t\cdot3 </math>


Dies formen wir um:
2 &&\; =\;&& 1 &&\; +\;&& r\cdot3
\end{alignat}\right\vert</math>




<math>
Formen wir dies um zu r erhalten wir
r\cdot1-t\cdot4=1 </math>


<math>
<math>\left\vert\begin{alignat}{7}
r\cdot2-t\cdot5=2 </math>
1 &&\; = \;&& r\cdot1\\


<math>
1 &&\; =\;&& r\cdot2\\
r\cdot3-t\cdot3=3 </math>


Wenn die erste Zeile mit <math>2</math> multipliziert wird:
1 &&\; =\;&& r\cdot3
\end{alignat}\right\vert</math>




<math>
Formen wir weiter zu <math>r</math> um, erhalten wir
r\cdot2-t\cdot8=2 </math>
<math>\left\vert\begin{alignat}{7}
 
1 &&\; = \;&& r\\
<math>
r\cdot2-t\cdot5=2 </math>
 
<math>
r\cdot3-t\cdot3=3 </math>
 
und dann von der ersten Zeile die zweite Zeile subtrahiert wird,
 
 
<math>
-t\cdot3=0 </math>
 
<math>
r\cdot2-t\cdot5=2 </math>


<math>
0.5 &&\; =\;&& r\\
r\cdot3-t\cdot3=3 </math>


erhälst du für <math>t=0</math>. Dies setzt du in der zweiten Zeile ein und erhälst <math>r=1</math>. In der untersten Zeile überprüfst du, ob die Ergebnisse stimmen. Setze dazu für <math>t</math> und <math>r</math> die Ergebnisse ein. Du erhälst <math>3=3</math>, was eine wahre Aussage ist. Daher schneiden sich die beiden Geraden.
0.333 &&\; =\;&& r
\end{alignat}\right\vert</math>


|2=Lösung Aufgabe a |3=Lösung Aufagbe a}}
und damit liegt der Punkt nicht auf der Geraden.|2=Lösung Aufgabe b|3=Lösung Aufgabe b}}


{{Lösung versteckt|1= Die zweite Antwort lautet ''schneiden''. Die beiden Geraden ''schneiden'' sich im Aufpunkt <math>(1|2|3)</math> selbst.|2=Lösung Aufgabe e b|3=Lösung Aufgabe b}}
{{Lösung versteckt|1= Die dritte Antwort lautet ''schneiden''. Die Richtungsvektoren sind nicht kollinear und damit ''schneiden'' sich die beiden Geraden im Aufpunkt <math>(1|2|3)</math> selbst.|2=Lösung Aufgabe c|3=Lösung Aufgabe c}}


{{Lösung versteckt|1= Die dritte Antwort lautet ''windschief''. Die beiden Geraden sind ''windschief'' zueinander. Dies kannst du wie folgt berechnen.
{{Lösung versteckt|1= Die vierte Antwort lautet ''windschief''. Die beiden Geraden sind ''windschief'' zueinander. Dies kannst du wie folgt berechnen.


<math>\left\vert\begin{alignat}{7}
1 &&\; +\;&& r\cdot1 &&\; =\;&& 3 &&\; +\;&& t\cdot1\\


<math>
1 &&\; +\;&& r\cdot2 &&\; =\;&& 3 &&\; +\;&& t\cdot4\\
1+r\cdot1=2+t\cdot1 </math>


<math>
1 &&\; +\;&& r\cdot3 &&\; =\;&& 4 &&\; +\;&& t\cdot3
1+r\cdot2=3+t\cdot4 </math>
\end{alignat}\right\vert</math>


<math>
1+r\cdot3=4+t\cdot3 </math>


Dies formen wir um:
Dies formen wir um:
<math>\left\vert\begin{alignat}{7}
r\cdot1 &&\; -\;&& t\cdot1 &&\; = \;&& 2 \\


<math>
r\cdot2 &&\; -\;&& t\cdot4 &&\; = \;&& 2 \\
r\cdot1-t\cdot1=1 </math>


<math>
r\cdot3 &&\; -\;&& t\cdot3 &&\; = \;&& 3
r\cdot2-t\cdot4=2 </math>
\end{alignat}\right\vert</math>


<math>
r\cdot3-t\cdot3=3 </math>


Wenn die erste Zeile mit <math>2</math> multipliziert wird  
Wenn die erste Zeile mit <math>2</math> multipliziert wird  


<math>\left\vert\begin{alignat}{7}
r\cdot2 &&\; -\;&& t\cdot2 &&\; = \;&& 4 \\


<math>
r\cdot2 &&\; -\;&& t\cdot4 &&\; = \;&& 2 \\
r\cdot2-t\cdot2=2 </math>


<math>
r\cdot3 &&\; -\;&& t\cdot3 &&\; = \;&& 3
r\cdot2-t\cdot4=2 </math>
\end{alignat}\right\vert</math>


<math>
r\cdot3-t\cdot3=3 </math>


und dann von der ersten Zeile die zweite Zeile subtrahiert wird,


und dann von der ersten Zeile die zweite Zeile subtrahiert wird,
<math>\left\vert\begin{alignat}{7}
t\cdot2 &&\; =\;&& 2 \\


<math>
r\cdot2 &&\; -\;&& t\cdot4 &&\; =\;&& 2 \\
t\cdot2=2 </math>


<math>
r\cdot3 &&\; -\;&& t\cdot3 &&\; =\;&& 3
r\cdot2-t\cdot4=2 </math>
\end{alignat}\right\vert</math>


<math>
r\cdot3-t\cdot3=3 </math>


erhälst du <math>t=1</math>. Wenn du dies in die zweite Zeile einsetzt, erhälst du für <math>r=3</math>. Setzt du dies in die letzte Zeile ein, erhälst du <math>6=3</math>, eine falsche Aussage. Damit sind die beiden Geraden windschief zueinander.
erhälst du <math>t=1</math>. Wenn du dies in die zweite Zeile einsetzt, erhälst du für <math>r=3</math>. Setzt du dies in die letzte Zeile ein, erhälst du <math>6=3</math>, eine falsche Aussage. Damit sind die beiden Geraden windschief zueinander.


|2=Lösung Aufgabe d|3=Lösung Aufgabe d}}
{{Lösung versteckt|1= Die fünfte Antwort lautet ''identisch''. Die beiden Geraden sind identisch. Dies sehen wir daran, dass die Richtungsvekoren identisch sind (<math>\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>) und der Aufpunkt <math>(2|3|4)</math> der Geraden <math>h</math> auf der Geraden <math>g</math> liegt:  <math>\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>. |2=Lösung Aufgabe e|3=Lösung Aufgabe e}}
|Farbe={{Farbe|orange}}|3= Arbeitsmethode }}


|2=Lösung Aufgabe c|3=Lösung Aufgabe c}}
|Farbe={{Farbe|orange}}|3= Arbeitsmethode}}
{{Box|1= Aufgabe 9: Lage erkennen|2=Löse das Quiz und mache dir deinen eigenen Lernzettel
{{LearningApp|app=19038875|width=100%|height=554px}}


|Farbe={{Farbe|orange}}|3= Arbeitsmethode}}




{{Box|1= Aufgabe 10: Lage zweier Geraden|2=Löse den Lückentext und mache dir deinen eigenen Lernzettel
{{Box|1= Aufgabe 12: Flugerlaubnis erteilen?|2=
{{LearningApp|app=19689096|width=100%|height=554px}}|Farbe={{Farbe|orange}}|3= Arbeitsmethode}}


Ein wichtiger Bestandteil der Flugsicherung sind die Fluglotsen der "Deutschen Flugsicherung" (DFS). Sie koordinieren und überwachen jährlich Millionen Flüge im deutschen Luftraum. Fluglotsenschüler Karl überwacht gerade zwei Flugzeuge. Hierzu gehört das Flugzeug der Fluglinie Aer. Es befindet sich bei <math> \begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix}</math> und fliegt innerhalb von 5 Sekunden zum Punkt <math> \begin{pmatrix} 510 \\ 410 \\ 350 \end{pmatrix}</math>. Ebenfalls ist das Flugzeug der Fluglinie Amadeus in die Luft. Dies befindet sich in <math> \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix}</math>. Pro Sekunde legt es eine Strecke von <math>175{,}49</math>  m zurück und besitzt einen Richtungsvektor von <math> \begin{pmatrix} 120{,}2 \\ 96{,}4 \\ z \end{pmatrix}</math>.


{{Box|1= Aufgabe 11: Flugerlaubnis erteilen?|2=
Es kam zu einem riesigen Stromausfall und der Fluglotse ist sich unsicher, ob die beiden Flugzeuge ohne Probleme weiterfliegen können oder kollidieren. Hilf ihm die Antworten auf folgende Fragen zu finden:  
 
Ein wichtiger Bestandteil der Flugsicherung sind die Fluglotsen der "Deutschen Flugsicherung" (DFS). Sie koordinieren und überwachen jährlich Millionen Flüge im deutschen Luftraum. Am heutigen Tag wollen zwei Flugzeuge starten. Hierzu gehört das Flugzeug der Fluglinie Aer. Es befindet sich bei <math> \begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix}</math> und fliegt innerhalb von 5 Sekunden zum Punkt <math> \begin{pmatrix} 510 \\ 410 \\ 350 \end{pmatrix}</math>. Ebenfalls ist das Flugzeug der Fluglinie Amadeus in die Luft. Dies befindet sich in <math> \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix}</math>. Pro Sekunde legt es eine Strecke von <math>175{,}49</math>  m zurück und besitzt einen Richtungsvektor von <math> \begin{pmatrix} 120{,}2 \\ 96{,}4 \\ z \end{pmatrix}</math>.
 
Es kam zu einem riesigen Stromausfall und der Fluglotse ist sich unsicher. Hilf ihm die Antworten auf folgende Fragen zu finden:  


'''a)''' Wie lauten die Geradengleichungen der einzelen Flugzeuge?
'''a)''' Wie lauten die Geradengleichungen der einzelen Flugzeuge?
Zeile 474: Zeile 574:
{{Lösung versteckt|1= Geschwindigkeit kann in verschiedene Einheiten angegeben werden, z.B.: <math>\tfrac{km}{h}</math>, <math>\tfrac{m}{s}</math> etc.. Nachdem du die Länge der Strecke nach einer Sekunde berechnet hast, musst du dies von <math>\tfrac{m}{s}</math> zu <math>\tfrac{km}{h}</math> umwandeln.|2=Tipp zu b |3=Tipp zu b}}
{{Lösung versteckt|1= Geschwindigkeit kann in verschiedene Einheiten angegeben werden, z.B.: <math>\tfrac{km}{h}</math>, <math>\tfrac{m}{s}</math> etc.. Nachdem du die Länge der Strecke nach einer Sekunde berechnet hast, musst du dies von <math>\tfrac{m}{s}</math> zu <math>\tfrac{km}{h}</math> umwandeln.|2=Tipp zu b |3=Tipp zu b}}


'''c)''' Können alle Flugzeuge starten, ohne dass es zu einer Kollision kommt?
Die Batterien deines GTRs haben den Geist aufgegeben. Es ist immer noch kein Strom vorhanden und der Fluglotse stellt dir die alles entscheidene Frage:
 
'''c)''' Können alle Flugzeuge weiterfliegen, ohne dass es zu einer Kollision kommt?


{{Lösung versteckt|1= Nur weil sich zwei Geraden schneiden heißt es noch nicht direkt, dass eine Kollision vorherrscht.|2=Tipp zu c |3=Tipp zu c}}
{{Lösung versteckt|1= Nur weil sich zwei Geraden schneiden heißt es noch nicht direkt, dass eine Kollision vorherrscht.|2=Tipp zu c |3=Tipp zu c}}
Zeile 488: Zeile 590:
<math>\begin{pmatrix} 510 \\ 410 \\ 350 \end{pmatrix} = \begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix} + 5\cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}, t \in \mathbb{R} </math>. Dies musst du in ein Gleichugssystem umformen und dies dann zu <math>x</math>,<math>y</math> und <math>z</math> auflösen:
<math>\begin{pmatrix} 510 \\ 410 \\ 350 \end{pmatrix} = \begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix} + 5\cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}, t \in \mathbb{R} </math>. Dies musst du in ein Gleichugssystem umformen und dies dann zu <math>x</math>,<math>y</math> und <math>z</math> auflösen:


<math>
<math>\left\vert\begin{alignat}{7}
510=10+5\cdot x </math>
510 &&\; =\;&& 10 &&\; +\;&& 5\cdot x\\
 
410 &&\; =\;&& 10 &&\; +\;&& 5\cdot y\\
 
350 &&\; =\;&& 0  &&\; +\;&& 5\cdot z
\end{alignat}\right\vert</math>


<math>
410=10+5\cdot y </math>


<math>
350= 0+5 \cdot z </math>


Zunächst bringst du die Zahlen auf die andere Seite:
Zunächst bringst du die Zahlen auf die andere Seite:
<math>\left\vert\begin{alignat}{7}
500 &&\; =\;&& 5\cdot x\\


<math>
400 &&\; =\;&& 5\cdot y\\
500=5\cdot x </math>


<math>
350 &&\; =\;&& 5\cdot z
400=5\cdot y </math>
\end{alignat}\right\vert</math>


<math>
und formst dann zu <math>x</math>,<math>y</math> und <math>z</math> um:
350= 5 \cdot z </math>
<math>\left\vert\begin{alignat}{7}
100 &&\; =\;&& x\\


und formst dann zu <math>x</math>,<math>y</math>, und <math>z</math> um:
80  &&\; =\;&& y\\


<math>
70  &&\; =\;&& z
100=x </math>
\end{alignat}\right\vert</math>


<math>
Und erhälst damit direkt den Richtungsvektor.
80=y </math>
 
<math>
70=z </math>
   
   
Flugzeug Amadeus:
Flugzeug Amadeus:
Zeile 525: Zeile 626:
Dies erhälst du wie folgt:
Dies erhälst du wie folgt:
Du kennst den Richtungsvektor:
Du kennst den Richtungsvektor:
<math> \begin{pmatrix} 120{,}2\\ 96{,}4 \\ 84\end{pmatrix}</math>. Nun musst du <math>z</math> berechnen. Im Text steht, dass das Flugzeug pro Sekunde eine Strecke von <math>175{,}49</math> m fliegt. Das bedeutet, dass der Richtungsvektor eine Länge von <math>175{,}49</math> besitzt. Dies kannst du mit der Formel der Länge eines Vektor berechnen:
<math> \begin{pmatrix} 120{,}2\\ 96{,}4 \\ z\end{pmatrix}</math>. Nun musst du <math>z</math> berechnen. Im Text steht, dass das Flugzeug pro Sekunde eine Strecke von <math>175{,}49</math> m fliegt. Das bedeutet, dass der Richtungsvektor eine Länge von <math>175{,}49</math> besitzt. Dies kannst du mit der Formel der Länge eines Vektor berechnen:




Zeile 531: Zeile 632:




Indem du beide Seiten zum quadart nimmst, entfällt die Wurzel und es folgt:
Indem du beide Seiten zum Quadart nimmst, entfällt die Wurzel und es folgt:




Zeile 537: Zeile 638:




Du formst zu <math>z^{2}</math> um und ziehst dann die Wurzel. Du erhälst gerundet <math>84</math>.  
Du formst zu <math>z^{2}</math> um und ziehst dann die Wurzel. Du erhälst gerundet <math>84</math> und <math>-84</math>. Da es sich hier jedoch nicht um ein U-Boot handelt, welches abtaucht, sondern um ein Flugzeug, welches in die Höhe geht, ist hier <math>84</math> die einzig mögliche Antwort.


|2=Lösung Aufgabe a|3=Lösung Aufgabe a}}
|2=Lösung Aufgabe a|3=Lösung Aufgabe a}}
Zeile 550: Zeile 651:
<math> L=145{,}95</math>.  
<math> L=145{,}95</math>.  


Du erhälst also eine Geschwindigkeit von <math>145{,}95</math> <math>\tfrac{m}{s}</math>. Es gilt: <math>3{,}6</math> <math>\tfrac{km}{h}</math>=1 <math>\tfrac{m}{s}</math>.  
Du erhälst also eine Geschwindigkeit von <math>145{,}95</math> <math>\tfrac{m}{s}</math>. Es gilt: <math>3{,}6</math> <math>\tfrac{km}{h}</math><math>=1</math> <math>\tfrac{m}{s}</math>.  
Umgerechnet in <math>\tfrac{km}{h}</math> sind das also:
Umgerechnet in <math>\tfrac{km}{h}</math> sind das also:


Zeile 569: Zeile 670:
Flugzeug Aer und Amadeus:  
Flugzeug Aer und Amadeus:  
Sie schneiden sich für
Sie schneiden sich für
<math> \begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix} + 30 \cdot \begin{pmatrix} 100 \\ 80 \\ 70 \end{pmatrix}= \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} + 25 \cdot \begin{pmatrix} 120{,}2\\ 96{,}4 \\ 84\end{pmatrix}</math>. Dies erhalten wir, indem wir beide Funktionen gleichsetzen und in ein Gleichungssystem umformen:
<math> \begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix} + 30 \cdot \begin{pmatrix} 100 \\ 80 \\ 70 \end{pmatrix}= \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} + 25 \cdot \begin{pmatrix} 120{,}2\\ 96{,}4 \\ 84\end{pmatrix}</math>.  
Dies erhälst du, wenn du mit dem GTR die beiden Geraden geleichsetzt. Alternativ wollen wir dir hier noch einmal Lösung ohne GTR zeigen.
Du erhälst die Lösung, indem dubeide Funktionen gleichsetzen und in ein Gleichungssystem umformen:


<math>\left\vert\begin{alignat}{7}
10 &&\; +\;&& t\cdot100 &&\; =\;&& 5 &&\; +\;&& s\cdot120{,}2\\


<math>
10 &&\; +\;&& t\cdot80  &&\; =\;&& 0 &&\; +\;&& s\cdot96{,}4\\
10+t \cdot100=5+s \cdot120{,}2 </math>


<math>
0  &&\; +\;&& t\cdot70  &&\; =\;&& 0 &&\; +\;&& s\cdot84
10+t \cdot80=0+s \cdot96{,}4 </math>
\end{alignat}\right\vert</math>


<math>
0+t \cdot70=0+s \cdot84 </math>


Dies formst du um:


Dann formst du dieses so um, dass alle Zahlen auf einer Seite sind:


<math>
<math>\left\vert\begin{alignat}{7}
5=s \cdot120{,}2-t \cdot100 </math>
5 &&\; =\;&& s\cdot120{,}2 &&\; -\;&& t\cdot100 \\


<math>
10 &&\; =\;&& s\cdot96{,}4 &&\; -\;&& t\cdot80\\
10=s \cdot96{,}4 -t \cdot80</math>


<math>
0 &&\; =\;&&  s\cdot84 &&\; -\;&& t\cdot70
0=s \cdot84 -t \cdot70</math>
\end{alignat}\right\vert</math>




und du multiplizierst die erste Zeile mit <math>4</math>, die zweite Zeile mit <math>5</math>:
und du multiplizierst die erste Zeile mit <math>4</math>, die zweite Zeile mit <math>5</math>:


<math>\left\vert\begin{alignat}{7}
20 &&\; = \;&& s\cdot480{,}8 &&\; -\;&& t\cdot400 \\


<math>
50 &&\; =\;&& s\cdot482 &&\; -\;&& t\cdot400\\
20=s \cdot480{,}8-t \cdot400 </math>


<math>
0 &&\; =\;&&  s\cdot84 &&\; -\;&& t\cdot70
50=s \cdot482 -t \cdot400</math>
\end{alignat}\right\vert</math>


<math>
0=s \cdot84 -t \cdot70</math>


Nun subtrahiere die zweite Zeile von der ersten Zeile:
Nun subtrahiere die zweite Zeile von der ersten Zeile:


<math>\left\vert\begin{alignat}{7}
{-}30 &&\; = \;&& s\cdot{-}1{,}2 \\


<math>
50 &&\; =\;&& s\cdot482 &&\; -\;&& t\cdot400\\
-30=s \cdot{-}1{,}2 </math>


<math>
0 &&\; =\;&&  s\cdot84 &&\; -\;&& t\cdot70
50=s \cdot482 -t \cdot400</math>
\end{alignat}\right\vert</math>


<math>
0=s \cdot84 -t \cdot70</math>


also folgt:
also folgt:


<math>
<math>\left\vert\begin{alignat}{7}
25=s</math>
25 &&\; = \;&& s \\
 
50 &&\; =\;&& s\cdot482 &&\; -\;&& t\cdot400\\


<math>
0 &&\; =\;&&  s\cdot84 &&\; -\;&& t\cdot70
50=s \cdot482 -t \cdot400</math>
\end{alignat}\right\vert</math>


<math>
0=s \cdot84 -t \cdot70</math>


Du erhälst also <math>s=25 </math>. Wenn du dies in die zweite Zeile einsetzt und umformst, erhälst du:
Du erhälst also <math>s=25 </math>. Wenn du dies in die zweite Zeile einsetzt und umformst, erhälst du:
<math>
<math>\left\vert\begin{alignat}{7}
25=s</math>
25 &&\; = \;&& s \\
 
30 &&\; =\;&& t \\


<math>
0 &&\; =\;&&  25\cdot84 &&\; -\;&& t\cdot70
30=t</math>
\end{alignat}\right\vert</math>


<math>
0=25 \cdot84 -t \cdot70</math>


Setzen wir nun in die letzte Zeile <math>t=30</math> ein, so erhalten wir dort <math>0=0</math> und wissen damit, dass sich die Geraden schneiden.
Setzen wir nun in die letzte Zeile <math>t=30</math> ein, so erhalten wir dort <math>0=0</math> und wissen damit, dass sich die Geraden schneiden.
Zeile 647: Zeile 746:
|Farbe={{Farbe|grün}}|3= Arbeitsmethode}}
|Farbe={{Farbe|grün}}|3= Arbeitsmethode}}


==Geraden und ihre Anwendungen==
{{Fortsetzung|vorher=zurück zur Kapitelauswahl|vorherlink=Digitale_Werkzeuge_in_der_Schule/Unterwegs_in_3-D_–_Punkte,_Vektoren,_Geraden_und_Ebenen_im_Raum#Kapitelauswahl}}
 
{{SORTIERUNG:{{SUBPAGENAME}}}}
[[Kategorie:Digitale Werkzeuge in der Schule]]

Aktuelle Version vom 23. Juni 2021, 17:42 Uhr

Info

In diesem Lernpfadkapitel beschäftigst du dich mit Geraden im Raum. Du lernst, Geraden im Raum durch Vektoren zu beschreiben, Parameterdarstellungen und Spurpunkte von Geraden zu bestimmen, die Lage von Geraden im Raum und zueinander zu bestimmen sowie Geradenscharen zu bestimmen.

Dazu haben wir für dich Aufgaben in verschiedenen Schwierigkeitsstufen:

  • Mit Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit und
  • Aufgaben mit grünem Streifen sind Knobelaufgaben.
Wir wünschen dir viel Erfolg!

Geraden und ihre Darstellungsformen

Parameterdarstellung einer Geraden

Definition

Jede Gerade lässt sich durch eine Gleichung der Form mit beschreiben.

  • Diese Vektorgleichung bezeichnet man als Parameterdarstellung oder Parametergleichung der Geraden mit dem Parameter .
  • Setzt man für irgendeine Zahl in die Parameterdarstellung der Geraden ein, so ergibt sich der Ortsvektor (auch genannt) eines Punktes der Geraden .
  • Der Vektor heißt Stützvektor. Er ist der Ortsvektor zu einem Punkt (auch Aufpunkt genannt), der auf der Geraden liegt.
  • Der Vektor heißt Richtungsvekor.

Wie du nun eine Parametergleichung durch zwei gegebene Punkte aufstellst, wird im folgenden Video erklärt:


Aufgabe 1: Parameter einer Geradengleichung

Im Folgenden kannst du sehen, wie die Gerade vom Stützpunkt , Richtungsvektor und Parameter abhängt. Wähle verschiedene Stützpunkte und Richtungsvektoren und verändere den Parameter. Wo liegt der Punkt , wenn du , und wählst? Was bedeutet dies anschaulich? Dazu kannst du dir auch die Gerade anzeigen lassen.


GeoGebra
  • Für liegt der Punkt hinter dem Punkt , d.h. man geht auf der Gerade vom Stützpunkt aus gesehen rückwärts.
  • Für liegt der Punkt genau auf dem Punkt , d.h. sie sind identisch, man befindet sich also genau auf dem Stützpunkt.
  • Für liegt der Punkt vor dem Punkt , d.h. man geht auf der Gerade vom Stützpunkt aus gesehen vorwärts.


Aufgabe 2: Geradengleichung aufstellen (zwei gegebene Punkte)

Bearbeite nun entweder die analoge Aufgabe (I) oder die digitale Aufgabe (II):

(I) Die Gerade geht durch die Punkte und . Gib zwei Gleichungen für an.

a)

b)

Wie du im obigen Video gesehen hast, gibt es unendlich viele Lösungen, denn es sind immer Vielfache des Richtungsvektors möglich. Daher ist es möglich, dass deine Lösung hier zwar nicht aufgefürt, aber dennoch korrekt ist. Dazu überprüfe, ob dein Richtungsvektor ein Vielfaches einer der angegeben Richtungsvektoren ist. Beachte das auch bei allen folgenden Aufgaben!

Zwei mögliche Geraden sind und .

Zwei mögliche Geraden sind und .

(II) Ordne jeweils die zwei Punkte A und B der Parametergleichung der Geraden durch A und B zu.

Du kannst aber auch eine Gerade aufstellen, die durch einen Punkt verläuft und parallel zu einer anderen Gerade oder zu einer der Koordinatenachsen ist.


Aufgabe 3: Geradengleichung aufstellen aus Punkt und Richtungsvektor

Stelle jeweils eine Geradengleichung auf.

a) Die Gerade geht durch den Punkt und hat den Richtungsvektor .

Überlege dir wie der Stützvektor der Geraden lauten muss und stelle dann die passende Geradengleichung mit dem Richtungsvektor auf.

b) Stelle eine Geradengleichung für die -Achse auf.

Überlege dir einen geschickten Aufpunkt; wie muss dann der Richtungsvektor aussehen?

c) Die Gerade geht durch den Punkt und verläuft parallel zur Geraden .

Wann verlaufen zwei Vektoren parallel zueinander? Übertrage diese Kenntniss auf Geraden.

d) Die Gerade geht durch den Punkt und verläuft parallel zur -Achse.

e) Die Gerade geht durch den einen beliebigen Punkt und verläuft parallel zur -Achse.

Diese Aufgabe funktioniert ähnlich zu d).


Eine mögliche Gerade ist .

Eine mögliche Gerade ist oder noch einfacher

Eine mögliche Gerade ist .

Eine mögliche Gerade ist .

Eine mögliche Gerade ist .

Punktprobe

Wie du überprüfst, ob ein gegebener Punkt auf einer gegebenen Gerade oder daneben liegt, kannst du hier noch einmal nachschauen.


Merksatz: Punktprobe

Liegt ein Punkt auf der Geraden g definiert durch mit , so gibt es genau ein , welches die Gleichung erfüllt. Erfüllt kein diese Gleichung, liegt der Punkt nicht auf der Geraden.


Aufgabe 4: Punktprobe mit einer Geraden I

Überprüfe, ob der Punkt auf der Geraden liegt.

a)

b)

Die Punktprobe ist erfüllt, denn:

Somit liegt der Punkt auf der Geraden .

Die Punktprobe ist nicht erfüllt, denn:

Es ergibt sich ein Widerspruch. Somit liegt der Punkt nicht auf der Geraden .


Aufgabe 5: Punktprobe mit einer Geraden II

Für welche Werte liegt der Punkt auf der Geraden ?

a)

b)

Berechne zunächst mithilfe der ersten Gleichung einen Wert für . Was könnte man nun machen?

Setze nun den ausgerechneten Wert für in die beiden anderen Gleichungen ein und berechne .

Die Punktprobe ist erfüllt, denn:

Somit liegt der Punkt für und auf der Geraden .

Es gibt keine Lösung, denn:

Es ergibt sich ein Widerspruch, weshalb keine Werte für Punkt gibt, sodass der Punkt auf der Geraden liegt.

Hier noch eine Aufgabe zu Geraden mit besonderen Lagen im Koordinatensystem:


Aufgabe 6: Besondere Geraden im Raum

Kreuze alle(!) richtigen Antworten an!



Spurpunkte einer Geraden

Wie du die Spurpunkte, also die Schnittpunkte der Geraden mit den Koordinatenebenen bestimmst, kannst du hier noch einmal nachvollziehen:

Falls du nicht mehr weißt, was die Koordinatenebenen sind, kannst unter folgendem Tipp noch einmal dein Wissen auffrischen:

Die -Ebene ist die Ebene, die von der - und -Achse aufgespannt wird (im Bild genannt). Entsprechendes gilt für die - (im Bild ) und -Ebene (im Bild ).

Die Koordinatenebenen


Aufgabe 7: Spurpunkte einer Geraden (Besondere Lage)

Hier kannst du dir die Spurpunkte von verschiedenen Geraden anzeigen lassen. Dazu kannst du den Aufpunktvektor und den Richtungsvektor mit den Schiebereglern entsprechend anpassen. Anschließend kannst du dir die drei Spurpunkte und ggf. auch die Ebenen anzeigen lassen, indem du das entsprechende Feld ankreuzt. Dann kannst du dir die Koordinatebenen mit den verschiedenen Schnittpunkten anzeigen lassen:

GeoGebra

Untersuche die Geraden, die aus folgenden Aufpunkt- und Richtungsvektoren hervorgehen, auf Spurpunkte und schreibe die Spurpunkte auf. Was sagt die Lage der Geraden über die Anzahl der Spurpunkte aus?

a)

b)

c)

d)

Betrachte mal ggf. vorhandene Parallelitäten der Geraden zu den Koordinatenebenen. Fällt dir nun etwas auf?


Die drei Spurpunkte lauten , und . Da die Gerade nicht parallel zu den Koordinatenebenen verläuft, besitzt sie drei Spurpunkte.

Die zwei Spurpunkte lauten und . Da die Gerade parallel zur -Ebene verläuft, hat sie keinen Schnittpunkt mit dieser und besitzt folglich nur zwei Spurpunkte.

Der einzige Spurpunkt lautet . Da die Gerade sowohl parallel zur -Ebene als auch parallel zur -Ebene verläuft, hat sie keine Schnittpunkte mit diesen und besitzt folglich nur einen Spurpunkt.

Die zwei Spurpunkte lauten und . Da die Gerade innerhalb der -Ebene verläuft, hat sie unendlich viele Schnittpunkte mit dieser.


Aufgabe 8: Spurpunkte einer Geraden

Berechne die Spurpunkte der Geraden .

a)

b)

c)

  1. Für den Schnittpunkt der Geraden mit der -Ebene setze die -Koordinate und forme nach um: . Setze nun in der Geradengleichung ein, um den Schnittpunkt zu erhalten: .
  2. Für den Schnittpunkt der Geraden mit der -Ebene setze die -Koordinate und forme nach um: . Setze nun in der Geradengleichung ein, um den Schnittpunkt zu erhalten:
  3. Für den Schnittpunkt der Geraden mit der -Ebene setze die -Koordinate und forme nach um: . Setze nun in der Geradengleichung ein, um den Schnittpunkt zu erhalten: . Hinweis (war nicht in der Aufgabe gefordert): Man erkennt, dass es sich um den selben Schnittpunkt handelt wie der Schnittpunkt der Gerade mit der -Ebene, also: .
  1. Für den Schnittpunkt der Geraden mit der -Ebene setze die -Koordinate und forme nach um: . Setze nun in der Geradengleichung ein, um den Schnittpunkt zu erhalten: .
  2. Für den Schnittpunkt der Geraden mit der -Ebene setze die -Koordinate und forme nach um: . Setze nun in der Geradengleichung ein, um den Schnittpunkt zu erhalten:
  3. Für den Schnittpunkt der Geraden mit der -Ebene setze die -Koordinate : . Es ergibt sich ein Widerspruch, weshalb es keinen Schnittpunkt der Geraden mit der -Ebene gibt. Somit verläuft parallel zur -Ebene.
  1. Für den Schnittpunkt der Geraden mit der -Ebene setze die -Koordinate und forme nach um: . Setze nun in der Geradengleichung ein, um den Schnittpunkt zu erhalten: .
  2. Für den Schnittpunkt der Geraden mit der -Ebene setze die -Koordinate und forme nach um: . Man erhält keine Lösung für den Parameter , aber auch keinen Widerspruch. Somit hat die Gerade unendlich viele Spurpunkte mit er -Ebene, da sie innerhalb dieser Ebene verläuft.
  3. Für den Schnittpunkt der Geraden mit der -Ebene setze die -Koordinate und forme nach um: . Setze nun in der Geradengleichung ein, um den Schnittpunkt zu erhalten: .


Lagebeziehungen von Geraden

Parallele und identische Geraden

Infobox zur Lagebeziehung zweier Geraden Teil 1

Wir unterscheiden die Lage zweier Geraden in identisch, parallel, sich schneidend und windschief zueinander.

Zwei identische Geraden
Zwei parallele Geraden

Um die Lage zweier Geraden zu ermitteln, betrachtet man zunächst die Richtungsvektoren. Sind diese zueinander kollinear (sind Vielfache voneinander), so können die Geraden lediglich identisch oder parallel sein.

Um nun zu untersuchen, ob die Geraden parallel oder identisch sind, setzen wir einen Punkt der einen Geraden in die Geradengleichung der anderen Geraden ein. Liegt der Punkt der einen Geraden auf der anderen Geraden, sind die Geraden identisch. Andernfalls sind die Geraden parallel zueinander.

Zwei Geraden schneiden sich
Zwei windschiefe Geraden



Sind die Richtungsvektoren nicht kollinear, so können die Geraden sich lediglich schneiden oder windschief zueinander verlaufen. Unter sich schneidene Geraden verstehen wir Geraden, die sich in einem Punkt schneiden. Windschiefe Geraden hingegen sind Geraden, die sich wie die parallelen Geraden zwar nicht schneiden, ihre Richtungsvektoren sind jedoch nicht kollinear.


Um nun zu untersuchen, ob sich die Geraden schneiden oder zueinader winschief zueinander sind, müssen wir schauen, ob sich ein Schnittpunkt berechnen lässt. Hierzu setzen wir die Geradengleichungen gleich und formen um. Erhalten wir einen Schnittpunkt, so schneiden sich die Geraden im Punkt. Andernfalls sind diese Geraden windschief zueinander.


Aufgabe 9: Lage erkennen

Löse das Quiz und mache dir deinen eigenen Lernzettel.


Aufgabe 10: Lage zweier Geraden

Löse den Lückentext und mache dir deinen eigenen Lernzettel.


Aufgabe 11: Lage erkennen

Betrachte die folgenden Geraden und . Wie verlaufen die Geraden zueinander. Entscheide ohne Nutzung des GTR.

a) und

b) und

c) und

Hier brauchst du kaum rechnen. Schaue dir die Aufpunkte nochmal genau an.

d) und

e) und

Die erste Antwort lautet identisch. Die beiden Geraden sind identisch. Dies sehen wir daran, dass die Richtungsvekoren mit ein Vielfaches voneinander (=kollinear) sind. Da beide Stützvektoren identisch sind, weißt du, dass der Punkt auf beiden Geraden liegt und somit die beiden Geraden identisch sind.

Die zweite Antwort lautet parallel. Die beiden Geraden sind parallel. Während die beiden Richtungsvektoren kollinear, sogar identisch, sind liegt der Aufpunkt von der Gerade nicht auf der Geraden von

, mit


Formen wir dies um zu r erhalten wir


Formen wir weiter zu um, erhalten wir

und damit liegt der Punkt nicht auf der Geraden.
Die dritte Antwort lautet schneiden. Die Richtungsvektoren sind nicht kollinear und damit schneiden sich die beiden Geraden im Aufpunkt selbst.

Die vierte Antwort lautet windschief. Die beiden Geraden sind windschief zueinander. Dies kannst du wie folgt berechnen.


Dies formen wir um:


Wenn die erste Zeile mit multipliziert wird


und dann von der ersten Zeile die zweite Zeile subtrahiert wird,


erhälst du . Wenn du dies in die zweite Zeile einsetzt, erhälst du für . Setzt du dies in die letzte Zeile ein, erhälst du , eine falsche Aussage. Damit sind die beiden Geraden windschief zueinander.
Die fünfte Antwort lautet identisch. Die beiden Geraden sind identisch. Dies sehen wir daran, dass die Richtungsvekoren identisch sind () und der Aufpunkt der Geraden auf der Geraden liegt: .



Aufgabe 12: Flugerlaubnis erteilen?

Ein wichtiger Bestandteil der Flugsicherung sind die Fluglotsen der "Deutschen Flugsicherung" (DFS). Sie koordinieren und überwachen jährlich Millionen Flüge im deutschen Luftraum. Fluglotsenschüler Karl überwacht gerade zwei Flugzeuge. Hierzu gehört das Flugzeug der Fluglinie Aer. Es befindet sich bei und fliegt innerhalb von 5 Sekunden zum Punkt . Ebenfalls ist das Flugzeug der Fluglinie Amadeus in die Luft. Dies befindet sich in . Pro Sekunde legt es eine Strecke von m zurück und besitzt einen Richtungsvektor von .

Es kam zu einem riesigen Stromausfall und der Fluglotse ist sich unsicher, ob die beiden Flugzeuge ohne Probleme weiterfliegen können oder kollidieren. Hilf ihm die Antworten auf folgende Fragen zu finden:

a) Wie lauten die Geradengleichungen der einzelen Flugzeuge?

Zu Aer: Setze alle gegebenen Daten in eine allgemeine Parameterdarstellung ein und forme um.

Zu Amadeus: Um den Richtungsvektor zu berechnen, benötigst du die Formel zur Berechnung der Länge eines Vektoren:

.

b) Wie schnell (in ) fliegen die einzelnen Flugzeuge?

Geschwindigkeit kann in verschiedene Einheiten angegeben werden, z.B.: , etc.. Nachdem du die Länge der Strecke nach einer Sekunde berechnet hast, musst du dies von zu umwandeln.

Die Batterien deines GTRs haben den Geist aufgegeben. Es ist immer noch kein Strom vorhanden und der Fluglotse stellt dir die alles entscheidene Frage:

c) Können alle Flugzeuge weiterfliegen, ohne dass es zu einer Kollision kommt?

Nur weil sich zwei Geraden schneiden heißt es noch nicht direkt, dass eine Kollision vorherrscht.


Flugzeug Aer: Wobei für die Zeit in Sekunden steht.

Dies erhälst du, indem du folgendes berechnest: . Dies musst du in ein Gleichugssystem umformen und dies dann zu , und auflösen:


Zunächst bringst du die Zahlen auf die andere Seite:

und formst dann zu , und um:

Und erhälst damit direkt den Richtungsvektor.

Flugzeug Amadeus: Wobei für die Zeit in Sekunden steht.

Dies erhälst du wie folgt: Du kennst den Richtungsvektor: . Nun musst du berechnen. Im Text steht, dass das Flugzeug pro Sekunde eine Strecke von m fliegt. Das bedeutet, dass der Richtungsvektor eine Länge von besitzt. Dies kannst du mit der Formel der Länge eines Vektor berechnen:



Indem du beide Seiten zum Quadart nimmst, entfällt die Wurzel und es folgt:



Du formst zu um und ziehst dann die Wurzel. Du erhälst gerundet und . Da es sich hier jedoch nicht um ein U-Boot handelt, welches abtaucht, sondern um ein Flugzeug, welches in die Höhe geht, ist hier die einzig mögliche Antwort.

Du berechnest die Geschwindigkeit, indem du die Länge des Richtungsvektors berechnest. Dies erfolgt mit der Formel:.

Fugzeug Aer:

.

.

Du erhälst also eine Geschwindigkeit von . Es gilt: . Umgerechnet in sind das also:

also eine Geschwindigkeit von .

Flugzeug Amadeus: Das Flugzeug Amadeus legt in einer Sekunde eine Strecke von m zurück. Damit hat es eine Geschwindigkeit von . Umgerechnet in sind das also:

also eine Geschwindigkeit von .

Flugzeug Aer und Amadeus: Sie schneiden sich für . Dies erhälst du, wenn du mit dem GTR die beiden Geraden geleichsetzt. Alternativ wollen wir dir hier noch einmal Lösung ohne GTR zeigen. Du erhälst die Lösung, indem dubeide Funktionen gleichsetzen und in ein Gleichungssystem umformen:


Dann formst du dieses so um, dass alle Zahlen auf einer Seite sind:


und du multiplizierst die erste Zeile mit , die zweite Zeile mit :


Nun subtrahiere die zweite Zeile von der ersten Zeile:


also folgt:


Du erhälst also . Wenn du dies in die zweite Zeile einsetzt und umformst, erhälst du:


Setzen wir nun in die letzte Zeile ein, so erhalten wir dort und wissen damit, dass sich die Geraden schneiden.

Da es jedoch nicht der gleiche Zeitpunkt ist, kommt es zu keiner Kollision.