Buss-Haskert/Körper/Kegel: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Wechseln zu: Navigation, Suche
K
(Markierung: 2017-Quelltext-Bearbeitung)
(Applet ergännzt)
(Markierung: 2017-Quelltext-Bearbeitung)
Zeile 90: Zeile 90:
  
 
===4) Volumen von Kegeln===
 
===4) Volumen von Kegeln===
 
+
<ggb_applet id="P7dYRTb8" width="830" height="550" border="888888" />
 
===Anwendungsaufgaben===
 
===Anwendungsaufgaben===
 
{{Box|Übung 8|Löse Buch
 
{{Box|Übung 8|Löse Buch

Version vom 7. November 2020, 21:56 Uhr

SEITE IM AUFBAU!!

2) Kegel

In der vorherigen Lerneinheit hast du die Pyramide mit einem beliebigen Vieleck als Grundfläche kennengelernt.
Ersetzt man nun das Vieleck der Grundfläche durch einen Kreis, so erhält man einen verwandten Spitzkörper: den Kegel!


Ice-cream-cone-2290071 1920.png . . . .Kegel Pylone.png. . . . DSC04737 Istanbul - La Moschea Blu - Minareti - Foto G. Dall'Orto 29-5-2006.jpg. . . . Turmspitze (Heilig-Kreuz-Kirche, Leipzig).jpg


Ob Eistüte, Pylonen oder Turmspitzen, man findet sehr häufig kegelförmige Objekte in unserer Lebenswelt.

GeoGebra

1) Merkmale von Kegeln

Merkmale von Kegeln

Fülle den Lückentext aus und übertrage ihn in dein Heft!

Ein Kegel ist ein Körper, dessen Grundfläche ein Kreis (Grundkreis) ist.
Die Mantelfläche des Kegels ist gewölbt. Der Abstand der Spitze S zur Grundfläche ist die Höhe des Kegels. Eine Verbindungsstrecke vom Kreisrand zur Kegelspitze heißt Mantellinie und wird mit "s" beschriftet.
Ebenso wie bei der Pyramide unterscheidet man auch hier zwischen geraden (senkrechten) und schiefen Kegeln. Schaue dir dazu das folgende Geogebra-Applet an.
Für uns sind allerdings nur gerade Kegel von Bedeutung.

Ziehe an der Kegelspitze S und beobachte, was passiert.

GeoGebra

von T.Weiss

2) Schrägbild und Netz von Kegeln

Das Video zeigt dir, wie du das Schrägbild eines Kegels zeichnest:


Übung 1

Zeichne das Schrägbild, wie im Video erklärt. Buch

  • S. 43 Nr. 7


GeoGebra


Netz eines Kegels
Schneide das Netz eines Kegels aus (AB liegt auf dem Pult) und falte daraus den Kegel. Klebe das Netz anschließend in dein Heft und beschreibe, aus welchen Teilflächen es besteht.

Kegel Netz.png


Netz eines Kegels
Das Netz eines Kegels besteht aus einem Kreis als Grundfläche und einem Kreisausschnitt als Mantelfläche.


Übung 2
Bearbeite im Buch S. 50 oben die Bastelaufgabe und notiere deine Überlegungen in deinem Heft.


GeoGebra


3) Oberfläche von Kegeln

Die Oberfläche eines Kegels setzt sich zusammen aus der Grundflächen G und der Mantelfläche M.
Die Grundfläche ist ein Kreis und die Mantelfläche hat die Form eines Kreisausschnittes.

Formel: O = G + M.


Oberfläche eines Kegels-Herleitung der Formel
Stelle eine Formel zur Berechnung des Oberflächeninhalts eines Kegels auf! Das nachfolgende Applet hilft dir. Notiere im Heft.

Das nachfolgende Applet kann dir helfen: Kippe den Kegel mit dem Schieberegler und führe die Abwicklung aus.(Du kannst Radius und Höhe des Kegels verändern.)

GeoGebra


M= AKreisausschnitt (mit dem Radius s)
= 𝞹∙s²∙
    aber: wir kennen α nicht
   

TIPP: in welcher Formel gibt es ebenfalls α? Vergleiche b und u.
Kegel Herleitung Formel Oberfläche 2.png
Kegel Herleitung Formel Oberfläche 3.png


Oberfläche eines Kegels

Die Oberfläche eines Kegels setzt sich zusammen aus der Grundfläche und der Mantelfläche.
O = G + M

    = 𝞹∙r² + 𝞹∙r∙s

Wende zur Berechnungen der Längen r, hK oder s den Satz des Pythagoras im rechtwinkligen Hilfsdreieck mit den Katheten r und hK und der Hypotenuse s an.
Kegel Teildreieck.png


Übung 3

Löse die Aufgaben aus dem Buch. Achte auf eine übersichtliche Darstellung. Notiere zunächst die Formel. Falls nötig, skizziere das Hilfsdreieck und berechne fehlende Seitenlängen. Setze dann in die Formel für den Mantel bzw. die Oberfläche ein. Löse Buch

  • S. 51 Nr. 1
  • S. 51 Nr. 2
  • S. 51 Nr. 5
Übung 3

Löse Buch

  • S. 51 Nr. 4
  • S. 51 Nr. 7




4) Volumen von Kegeln

GeoGebra

Anwendungsaufgaben

Übung 8

Löse Buch

  • S. 51 Nr. 6
  • S. 51 Nr. 8
  • S. 51 Nr. 9

Umfangreiche Übungen findest du auf der Seite Aufgabenfuchs - Kegel.