Benutzer:Maurice Krause/Testseite

Aus ZUM Projektwiki
Wechseln zu: Navigation, Suche
Aufgabe 1: Geradengleichung aufstellen (zwei gegebene Punkte)

Im Folgenden kannst du sehen, wie die Gerade vom Stützpunkt , Richtungsvektor und Parameter abhängt. Wähle verschiedene Stützpunkte und Richtungsvektoren und verändere den Parameter. Wo liegt der Punkt , wenn du , und wählst? Was bedeutet dies anschaulich? Dazu kannst du dir auch die Gerade anzeigen lassen.


GeoGebra
  • Für liegt der Punkt hinter dem Punkt , d.h. man geht auf der Gerade vom Stützpunkt aus gesehen rückwärts.
  • Für liegt der Punkt genau auf dem Punkt , d.h. sie sind identisch, man befindet sich also genau auf dem Stützpunkt.
  • Für liegt der Punkt vor dem Punkt , d.h. man geht auf der Gerade vom Stützpunkt aus gesehen vorwärts.
Hervorhebung1


Test \checkmark Test



Für den Schnittpunkt der Geraden mit der -Ebene setze die -Koordinate und forme nach um: . Setze nun in der Geradengleichung ein, um den Schnittpunkt zu erhalten:


Aufgabe 9: Lückentext - Geometrische Bedeutung von Vektoraddition und skalarer Multiplikation

Test a Test b Test c Test d Test e Test f Test g Test h Test i Test j Test k Test l Test m Test


und ihre Länge bestimmen:

Winkel zwischen den beiden Vektoren bestimmen:

Die Innenwinkel des Dreiecks ABS sind

Die Innenwinkel des Dreiecks ABS sind .


Hallo

Hallo .


Video

Du hast immer noch keine genaue Vorstellung davon, wie du das Skalarprodukt zweier Vektoren berechnen kannst? Dann schaue dir das Video zum Thema Skalarprodukt an:



Wenn du die Höhe der Pyramide kennst, weißt du, welche Abstand die Spitze von der Grundfläche hat. Du kennst auch schon den Mittelpunkt der Pyramiden und kannst entlang des Normalenvektors von zur Spitze gelangen.

Du kannst die Höhe der Pyramide mithilfe des Satzes von Pythagoras und der Längenangaben berechnen.

GeoGebra










a

sich nach 10sek auf  . Ebenfalls m

b

sich nach 10sek auf . Ebenfalls möchte das

a

Welche der folgenden Geraden verlaufen durch die Punkte und ?

Test

a

<math>\begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9  \end{pmatrix}</math>

a

<math>\begin{pmatrix}
1 & 2 & 3\\
4 & 5 & 6\\
7 & 8 & 9 
\end{pmatrix}</math>


Regex

JA:


NEIN:


6x7 6 x 7 6x 7 6 x7

NEIN:

  • a

JA:

Tests

Du hast 20 m Zaun zur Verfügung und möchtest damit eine Wiese einzäunen. Wie groß ist die größte rechteckige Fläche, die man damit einzäunen kann?

Text

Hier steht eine eingebettete Aufgabenstellung.

Text

GeoGebra

a

GeoGebra

b

GeoGebra
GeoGebra





Beachte 1
...


Beachte 1
...


Titel
GeoGebra


Titel
GeoGebra



A B
C 1 2
D 3 4

AKreis

m3

Text Text

Text Text

Test

1

Löse folgendes Gleichungssystem mit dem Einsetzungsverfahren:

,
,
,
,

2

Beispielfrage

a
b