Benutzer:Buss-Haskert/Quadratische Funktionen/Scheitelpunktform: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(16 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
SEITE IM AUFBAU
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]]
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}
<br>
<br>
Zeile 91: Zeile 91:
{{LearningApp|app=p7auviemc19|width=100%|height=400px}}
{{LearningApp|app=p7auviemc19|width=100%|height=400px}}


{{Box|Übung 12 - online|* Ordne in der LenarningApp den Funktionsgraphen die passenden Funktionsgleichungen zu.
{{Box|Übung 12 - online|a) Ordne in der LenarningApp den Funktionsgraphen die passenden Funktionsgleichungen zu.
* Löse anschließend auf der Seite [https://www.realmath.de/Neues/Klasse9/parabueb/parabelzeichnen2.php '''realmath'''] so viele Aufgaben, dass du mindestens 300 Punkte sammelst. |Üben}}
b) Löse anschließend auf der Seite [https://www.realmath.de/Neues/Klasse9/parabueb/parabelzeichnen2.php '''realmath'''] so viele Aufgaben, dass du mindestens 300 Punkte sammelst.|Üben
}}


{{LearningApp|app=puwipwqg220|width=100%|height=800px}}
{{LearningApp|app=puwipwqg220|width=100%|height=800px}}
Zeile 123: Zeile 124:
<br /><br />
<br /><br />
{{Box|1=Übung 14  - Scheitelpunktform online|2=Die Scheitelpunktform quadratischer Funktionen lautet f(X) = a(x + d)² + e. Du hast die Bedeutung der Parameter a(nton), d(etlef) und e(mil) erarbeitet. Wende dein Wissen in den nachfolgenden Übungen an.|3=Üben}}
{{Box|1=Übung 14  - Scheitelpunktform online|2=Die Scheitelpunktform quadratischer Funktionen lautet f(X) = a(x + d)² + e. Du hast die Bedeutung der Parameter a(nton), d(etlef) und e(mil) erarbeitet. Wende dein Wissen in den nachfolgenden Übungen an.|3=Üben}}
{{LearningApp|app=2767802|width=100%|height=400px}}
{{LearningApp|app=2767802|width=100%|height=600px}}
{{LearningApp|app=pq6e32wtk20|width=100%|height=400px}}
{{LearningApp|app=pq6e32wtk20|width=100%|height=400px}}
{{LearningApp|app=pyhmt468323|width=100%|height=600px}}


{{Box|Übung 15 - Scheitelpunktform|Löse die Aufgaben aus dem Buch.  
{{Box|Übung 15 - Scheitelpunktform|Löse die Aufgaben aus dem Buch.  
* S. 16, Nr. 1
* S. 16, Nr. 1 (Zeichnung mit GeoGebra zur Lösungskontrolle)
* S. 16, Nr. 2  
* S. 16, Nr. 2  
* S. 16, Nr. 3|Üben}}
* S. 16, Nr. 3|Üben}}


{{Lösung versteckt|1=Du findest die Koordinaten des Scheitelpunktes der Parabel in der Gleichung: <br>
f(x) = (x+d)² + e mit S(-d&#124;e)<br>
f(x) = (x-2) + 3, also S(2&#124;3)|2=Tipp zu Nr. 1|3=Verbergen}}
{{Lösung versteckt|1=Nutze zur Lösungskontrolle das Applet. Schiebe den Scheitelpunkt S an den von dir angegebenen Punkt und schau, ob die Funktionsgleichung mit der im Buch angegebenen übereinstimmt<br>
{{Lösung versteckt|1=Nutze zur Lösungskontrolle das Applet. Schiebe den Scheitelpunkt S an den von dir angegebenen Punkt und schau, ob die Funktionsgleichung mit der im Buch angegebenen übereinstimmt<br>
<ggb_applet id="hvm9xfmm" width="949" height="813" border="888888" />.|2=Tipp zur Lösungskontrolle Nr. 1|3=Verbergen}}
<ggb_applet id="hvm9xfmm" width="949" height="813" border="888888" />.|2=Tipp zur Lösungskontrolle Nr. 1|3=Verbergen}}
{{Lösung versteckt|1=Die Verschiebung des Scheitelpunktes der Normalparabel führt zum neuen Scheitelpunkt:<br>
a) 3LE nach rechts und 2 LE nach oben, also S(3&#124;2).<br>
[[Datei:S.16 Nr. 2 Verschiebung der Normalparabel neu.png|rahmenlos]]<br>
Setze die Koordinaten des Scheitelpunktes passend in die Scheitelpunktform ein:<br>
S(-d&#124;e) einsetzen in f(x) = (x+d)² + e<br>
S(3&#124;2) einsetzen: f(x) = (x-3)² + 2|2=Tipp zu Nr. 2|3=Verbergen}}
{{Lösung versteckt|1=Setze die Koordinaten des Scheitelpunktes passend in die Scheitelpunktform ein:<br>
S(-d&#124;e) einsetzen in f(x) = (x+d)² + e<br>
S(3&#124;2) einsetzen: f(x) = (x-3)² + 2|2=Tipp zu Nr. 3|3=Verbergen}}
{{Lösung versteckt|1=Nutze auch hier zur Lösungskontrolle das Applet. Verschiebe den Scheitelpunkt auf den im Buch angegeben Punkt und vergleiche die Funktionsgleichung mit deiner Lösung.<br>
{{Lösung versteckt|1=Nutze auch hier zur Lösungskontrolle das Applet. Verschiebe den Scheitelpunkt auf den im Buch angegeben Punkt und vergleiche die Funktionsgleichung mit deiner Lösung.<br>
<ggb_applet id="hvm9xfmm" width="949" height="813" border="888888" />|2=Tipp zur Lösungskontrolle Nr. 3|3=Verbergen}}
<ggb_applet id="hvm9xfmm" width="949" height="813" border="888888" />|2=Tipp zur Lösungskontrolle Nr. 3|3=Verbergen}}


{{Box|Übung 16 - Verschobene Normalparabel|Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 300 Punkte gesammelt hast. Erkläre deinem Partner/deiner Partnerin, was in dieser Übung jeweils gefestigt werden soll. Notiere zu jeder Aufgabe ein Beispiel mit deinem erworbenen Wissen in dein Heft.
{{Box|Übung 16 - Verschobene Normalparabel|Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 300 Punkte gesammelt hast. Erkläre deinem Partner/deiner Partnerin, was in dieser Übung jeweils gefestigt werden soll.  
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen2.php Aufgabe 1]
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen2.php Aufgabe 1]
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen1.php Aufgabe 2]
* [http://realmath.de/Neues/Klasse9/parabueb/parabelzeichnen1.php Aufgabe 2]
Zeile 169: Zeile 183:
{{Box|Skizzieren einer verschobenen Normalparabel (ohne Schablone)|[[Datei:Idee Flipchart.png|rechts|rahmenlos|100x100px]] Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben, nutze danach die Achsensymmetrie der Parabel.<br>
{{Box|Skizzieren einer verschobenen Normalparabel (ohne Schablone)|[[Datei:Idee Flipchart.png|rechts|rahmenlos|100x100px]] Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben, nutze danach die Achsensymmetrie der Parabel.<br>
Das Applet zeigt das Skizzieren Schritt für Schritt. Erkläre!|Meinung}}
Das Applet zeigt das Skizzieren Schritt für Schritt. Erkläre!|Meinung}}
Originallink https://www.geogebra.org/m/jn52gfzu<br>
<ggb_applet id="jn52gfzu" width="754" height="706" border="888888" />
<ggb_applet id="jn52gfzu" width="754" height="706" border="888888" />
<small>Applet von C.Buß-Haskert</small>
<small>Applet von C.Buß-Haskert</small>
Zeile 187: Zeile 202:


{{Box|Übung 19|Nachdem du die Aufgaben bis hier erfolgreich gelöst und diskutiert hast, sollten die nachfolgenden Aufgaben aus dem Buch kein Problem mehr für dich sein.
{{Box|Übung 19|Nachdem du die Aufgaben bis hier erfolgreich gelöst und diskutiert hast, sollten die nachfolgenden Aufgaben aus dem Buch kein Problem mehr für dich sein.
* S.16 Nr. 4  
* S.16, Nr. 4  
* S.16 Nr. 5  
* S.16, Nr. 5  
* S.16 Nr. 8  
* S.16, Nr. 8  
* S.16 Nr. 9  
* S.16, Nr. 9  
* S.16 Nr. 10 (Nutze in GeoGebra die Funktion "Spiegle an Gerade", s.Tipp unten)  
* S.16, Nr. 10 (Nutze in GeoGebra die Funktion "Spiegle an Gerade", s.Tipp unten)  
* S.19 Nr. 13
* S.19, Nr. 13
Expertenaufgabe (Ergänzung zu Nr. 10): Spiegle die Parabeln auch an der x-Achse und gib die neue Funktionsgleichung an.|Üben}}
Expertenaufgabe (Ergänzung zu Nr. 10): Spiegle die Parabeln auch an der x-Achse und gib die neue Funktionsgleichung an.|Üben}}


Zeile 201: Zeile 216:
<ggb_applet id="hvm9xfmm" width="949" height="813" border="888888" />|Tipp zu Nr. 8|Verbergen}}
<ggb_applet id="hvm9xfmm" width="949" height="813" border="888888" />|Tipp zu Nr. 8|Verbergen}}
{{Lösung versteckt|Skizzen zu 8a, 8b:<br>
{{Lösung versteckt|Skizzen zu 8a, 8b:<br>
[[Datei:SP10 S.16 Nr. 8a Tipp.png|rahmenlos|600x600px]]<br>
[[Datei:SP10 S.16, Nr. 8a Tipp.png|rahmenlos|600x600px]]<br>
[[Datei:SP10 S.16 Nr. 8b Tipp.png|rahmenlos|600x600px]]
[[Datei:SP10 S.16,Nr. 8b Tipp.png|rahmenlos|600x600px]]
|Tipp: Skizzen zu 8a und 8b|Verbergen}}
|Tipp: Skizzen zu 8a und 8b|Verbergen}}
{{Lösung versteckt|Nutze das Applet und verschiebe den Scheitelpunkt entsprechend der Angaben in der Aufgabe. Prüfe so deine Lösung.
{{Lösung versteckt|Nutze das Applet und verschiebe den Scheitelpunkt entsprechend der Angaben in der Aufgabe. Prüfe so deine Lösung.
Zeile 211: Zeile 226:
[[Datei:Verschobene Normalparabel spiegeln (GeoGebra) 3.png|rahmenlos|600x600px]]<br>
[[Datei:Verschobene Normalparabel spiegeln (GeoGebra) 3.png|rahmenlos|600x600px]]<br>
[[Datei:Verschobene Normalparabel spiegeln (GeoGebra) 4.png|rahmenlos|600x600px]]|zu Nr. 10: Spiegeln der verschobenen Normalparabel mithilfe von GeoGebra (Bilderfolge)|Verbergen}}
[[Datei:Verschobene Normalparabel spiegeln (GeoGebra) 4.png|rahmenlos|600x600px]]|zu Nr. 10: Spiegeln der verschobenen Normalparabel mithilfe von GeoGebra (Bilderfolge)|Verbergen}}
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/hsfbfp27<br>
<ggb_applet id="dzdcxsv6" width="700" height="500" border="888888" />|2=GeoGebra-Applet zu Nr. 10|3=Verbergen}}
{{Lösung versteckt|1=Originallink https://www.geogebra.org/m/edwwkzk6 <br>
<ggb_applet id="edwwkzk6" width="1242" height="730" border="888888" />|2=GeoGebra-Applet zu Nr. 13|3=Verbergen}}


{{Box|Übung 20 - Punktprobe|Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt.
{{Box|Übung 20 - Punktprobe|Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt.
Zeile 235: Zeile 254:
</div>|3=Arbeitsmethode}}
</div>|3=Arbeitsmethode}}
{{LearningApp|app=pa368wnrk22|width=100%|height=600px}}
{{LearningApp|app=pa368wnrk22|width=100%|height=600px}}
{{LearningApp|app=pniax2v4519|width=100%|heigth=600px}}


{{Box|Übung 21: Modellieren mit quadratischen Funktionen|[[Datei:Modellieren.png|rahmenlos|rechts]]Löse die Aufgabe aus dem Buch. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich.
 
{{Box|Übung 21: Modellieren mit quadratischen Funktionen|[[Datei:Modellieren(1).jpg|rahmenlos|rechts|200x200px]]Löse die Aufgabe aus dem Buch. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich.
* S. 25, Nr. 6|Üben}}
* S. 25, Nr. 6|Üben}}
{{Lösung versteckt|1=Die Weite x und die Höhe y beziehen sich immer auf den Körperschwerpunkt.|2=Tipp zu Nr. 6|3=Verbergen}}
{{Lösung versteckt|1=Die Weite x und die Höhe y beziehen sich immer auf den Körperschwerpunkt.|2=Tipp zu Nr. 6|3=Verbergen}}

Aktuelle Version vom 17. September 2024, 08:57 Uhr

Schullogo HLR.jpg


5 Scheitelpunktform quadratischer Funktionen

Die Scheitelpunktform entdecken
Experimentiere mit der Normalparabel f(x) = x². Verschiebe den Scheitelpunkt S im Koordinatensystem und beobachte die Auswirkung auf die Funktionsgleichung. Was fällt dir auf? Diskutiere mit deinem Partner/deiner Partnerin.
GeoGebra


Die Scheitelpunktform quadratischer Funktionen

Die quadratische Funktion der Form f(x) = (x+d)²+e heißt Scheitelpunktform. Ihr Graph ist eine verschobene Normalparabel mit dem Scheitelpunkt S(-d|e).

Der Parameter d verschiebt den Scheitelpunkt in x-Richtung: d>0 nach links verschoben ("dusseliger Detelf") und d<0 nach rechts.
Der Parameter e verschiebt den Scheitelpunkt in y-Richtung (nach oben bzw. unten).

Und nun noch einmal schrittweise:

5.1 Detlef: f(x) = (x + d

Detlef ist ebenfalls sportlich, allerdings auch ein wenig dusselig. Er läuft beim Sprint immer in die entgegengesetzte Richtung.



Bedeutung des Parameters d

Welche Rolle spielt detlef ?

Verändere d mit dem Schieberegler. Welche Auswirkungen hat detlef auf das Schaubild der Normalparabel?
GeoGebra


f(x) = (x+d)² - Parabeln zeichnen

Erstelle je eine Wertetabelle für die Funktionsgleichungen und zeichne die Parabeln. Nutze verschiedene Farben. Beschreibe die Bedeutung des Parameters d für den Verlauf der Parabel.

Funktionsgleichung -3 -2 -1 0 1 2 3
f(x) = (x+2)² (-3+2)²=1 (-2+2)²=0 (-1+2)=1 (0+2)²=4 (1+2)²=9 (2+2)²16 (3+2)²=25
g(x) = (x+1)² (-3+1)²=4 ...
h(x) = (x-1)² (-3-1)²=16
p(x) = (x-2)² (-3-2)²=25
SP10 S.15 Einstieg oben.png



Übung 12 - online

a) Ordne in der LenarningApp den Funktionsgraphen die passenden Funktionsgleichungen zu.

b) Löse anschließend auf der Seite realmath so viele Aufgaben, dass du mindestens 300 Punkte sammelst.




5.2 Emil: f(x) = x² + e

emil ist ebenfalls sehr sportlich:

Er kann sehr hoch springen, ebenso gut kann er tauchen. Emil beim Hochsprung

Bedeutung des Parameters e

Welche Rolle spielt emil ?

Verändere e mithilfe des Schiebereglers. Welche Auswirkungen hat emil auf das Schaubild der Normalparabel?
GeoGebra



Den Parameter e hast du schon auf der vorherigen Seite kennengelernt, dort hieß er "c".


Übung 13 - online
  • Ordne in der LearningApp den Funktionsgraphen die passenden Funktionsgleichungen zu.
  • Löse anschließend auf der Seite realmath so viele Aufgaben, dass du mindestens 300 Punkte sammelst.



Die Scheitelpunktform quadratischer Funktionen f(x) = a(x+d)²+e



Übung 14 - Scheitelpunktform online
Die Scheitelpunktform quadratischer Funktionen lautet f(X) = a(x + d)² + e. Du hast die Bedeutung der Parameter a(nton), d(etlef) und e(mil) erarbeitet. Wende dein Wissen in den nachfolgenden Übungen an.




Übung 15 - Scheitelpunktform

Löse die Aufgaben aus dem Buch.

  • S. 16, Nr. 1 (Zeichnung mit GeoGebra zur Lösungskontrolle)
  • S. 16, Nr. 2
  • S. 16, Nr. 3

Du findest die Koordinaten des Scheitelpunktes der Parabel in der Gleichung:
f(x) = (x+d)² + e mit S(-d|e)

f(x) = (x-2) + 3, also S(2|3)

Nutze zur Lösungskontrolle das Applet. Schiebe den Scheitelpunkt S an den von dir angegebenen Punkt und schau, ob die Funktionsgleichung mit der im Buch angegebenen übereinstimmt

GeoGebra
.

Die Verschiebung des Scheitelpunktes der Normalparabel führt zum neuen Scheitelpunkt:
a) 3LE nach rechts und 2 LE nach oben, also S(3|2).
S.16 Nr. 2 Verschiebung der Normalparabel neu.png
Setze die Koordinaten des Scheitelpunktes passend in die Scheitelpunktform ein:
S(-d|e) einsetzen in f(x) = (x+d)² + e

S(3|2) einsetzen: f(x) = (x-3)² + 2

Setze die Koordinaten des Scheitelpunktes passend in die Scheitelpunktform ein:
S(-d|e) einsetzen in f(x) = (x+d)² + e

S(3|2) einsetzen: f(x) = (x-3)² + 2

Nutze auch hier zur Lösungskontrolle das Applet. Verschiebe den Scheitelpunkt auf den im Buch angegeben Punkt und vergleiche die Funktionsgleichung mit deiner Lösung.

GeoGebra


Übung 16 - Verschobene Normalparabel

Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 300 Punkte gesammelt hast. Erkläre deinem Partner/deiner Partnerin, was in dieser Übung jeweils gefestigt werden soll.


Übung 17 - Scheitelpunktform ablesen und Parabeln zeichnen
Bearbeite die nachfolgenden GeoGebra-Applets.

Originallink: https://www.geogebra.org/m/hgctdsff

GeoGebra

Applet von Hans-Jürgen Elschenbroich

Originallink: https://www.geogebra.org/m/CdNTYBpZ

GeoGebra


GeoGebra

Applets von Wolfgang Wengler

Buch GeoGebra: Parabeln zeichnen
Originallink: https://www.geogebra.org/m/ZTXR23d8#chapter/236008

GeoGebra
GeoGebra
GeoGebra
GeoGebra

Applets von Bernhard Krügel

Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle

Skizzieren einer verschobenen Normalparabel (ohne Schablone)
Idee Flipchart.png
Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben, nutze danach die Achsensymmetrie der Parabel.
Das Applet zeigt das Skizzieren Schritt für Schritt. Erkläre!

Originallink https://www.geogebra.org/m/jn52gfzu

GeoGebra

Applet von C.Buß-Haskert

Das Video erklärt dies noch einmal anschaulich.


Übung 18 - Parabeln skizzieren (ohne Schablone)

Skizziere wie oben beschrieben die verschobenen Normalparabeln ein deinem Heft. Zeichne in ein Koordinatenkreuz, nutze verschiedene Farben.

  • f(x) = (x-2)² - 1
  • g(x) = (x+1)² + 2
  • h(x) = (x-4)² + 1
  • p(x) = (x+3)² - 2

Prüfe deine Zeichnungen mithilfe des Applets oben. Gib die Koordinaten des Scheitelpunktes ein und nutze für die Skizze den Schieberegler.
Scheitelpunkt für f(x): S(2|-1)
Scheitelpunkt für f(x): S(-1|2)
Scheitelpunkt für f(x): S(4|1)

Scheitelpunkt für f(x): S(-3|-2)


Übung 19

Nachdem du die Aufgaben bis hier erfolgreich gelöst und diskutiert hast, sollten die nachfolgenden Aufgaben aus dem Buch kein Problem mehr für dich sein.

  • S.16, Nr. 4
  • S.16, Nr. 5
  • S.16, Nr. 8
  • S.16, Nr. 9
  • S.16, Nr. 10 (Nutze in GeoGebra die Funktion "Spiegle an Gerade", s.Tipp unten)
  • S.19, Nr. 13
Expertenaufgabe (Ergänzung zu Nr. 10): Spiegle die Parabeln auch an der x-Achse und gib die neue Funktionsgleichung an.
Schau das Video oben noch einmal an und skizziere die verschobene Normalparabel vom Scheitelpunkt aus entsprechend. Beachte den Tipp am Rand im Buch.

Erinnerung: Einteilung des Koordinatensystems in Quadranten:

Cartesian-coordinate-system-with-quadrant.svg

Nutze das Applet: Verschiebe den Scheitelpunkt so, dass der Graph durch die angegebene Punkte verläuft. Wo liegt dann der Scheitelpunkt? Begründe!

GeoGebra

Nutze das Applet und verschiebe den Scheitelpunkt entsprechend der Angaben in der Aufgabe. Prüfe so deine Lösung.

GeoGebra

Bilderfolge zum Spiegeln der verschobenen Normalparabel an der y-Achse:
Verschobene Normalparabel spiegeln (GeoGebra) 1.png
Verschobene Normalparabel spiegeln (GeoGebra) 2.png
Verschobene Normalparabel spiegeln (GeoGebra) 3.png

Verschobene Normalparabel spiegeln (GeoGebra) 4.png


Übung 20 - Punktprobe

Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt.

  • S. 16, Nr. 6

Verschiebe den Scheitelpunkt passend zur Funktionsgleichung. Prüfe dann, ob der angegebene Punkt auf der Parabel liegt.

GeoGebra

Rechnerische Probe: PUNKTPROBE

Setze die Koordinaten des Punktes in die Funktionsgleichung ein prüfe, ob ein wahre (Punkt liegt auf der Parabel) oder falsche (Punkt liegt nicht auf der Parabel) Aussage entsteht.

Musterlösung zu Aufgabenteil a)
f(x) = (x-4)²; P(1|9)
9 = (1-4)²
9 = (-3)²
9 = 9 (w)

Es entsteht eine wahre Aussage (w), also liegt der Punkt auf der Parabel.


Zusammenfassung

Quadratische Funktionen haben verschiedene Strukturen, die zugehörigen Parabeln haben dementsprechend bestimmte Formen.

f(x) = ax² mit S(0|0)
F(x)=ax².png
f(x) = ax² + c mit S(0|c)
F(x)=ax²+c.png
f(x) = a(x + d)² + e mit S(-d|e)
F(x)=a(x+d)²+e.png




Übung 21: Modellieren mit quadratischen Funktionen
Modellieren(1).jpg
Löse die Aufgabe aus dem Buch. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich.
  • S. 25, Nr. 6
Die Weite x und die Höhe y beziehen sich immer auf den Körperschwerpunkt.

Die Funktionsgleichung hat die Form f(x) = a(x + d)² + e, mit a=-0,05, also nach unten geöffnet und gestaucht und S(3|1,8). Skizze:

SP 10 S.25 Nr.6 Skizze.png
Gegeben ist die Höhe, also die y-Koordinate, gesucht sind die zugehörigen x-Koordinaten der Punkte P und Q .
SP 10 S. 25 Nr.6a Skizze.png
Die maximale Höhe des Körperschwerpunktes ist mathematisch die y-Koordinate des Scheitelpunktes. Diese kannst du in der Scheitelpunktform abelsen: S(3|1,8), also...

Erkundige dich, wie hoch und breit ein Auto ist. Zeichne es dann symmetrisch zum Scheitelpunkt in deine Skizze und überlege, welche Größen gesucht sind.
Skizze:

SP 10 S.25 Nr.6c Skizze.png

Die Sprungweite entspricht der 2. Nullstelle, also f(x) = 0.

Vergleiche deine rechnerische Lösung mit der tatsächlichen Sprungweite von 8,90m.